Advertisement

Computer-based radiological longitudinal evaluation of meningiomas following stereotactic radiosurgery

  • Eli Ben Shimol
  • Leo JoskowiczEmail author
  • Ruth Eliahou
  • Yigal Shoshan
Original Article

Abstract

Purpose

Stereotactic radiosurgery (SRS) is a common treatment for intracranial meningiomas. SRS is planned on a pre-therapy gadolinium-enhanced T1-weighted MRI scan (Gd-T1w MRI) in which the meningioma contours have been delineated. Post-SRS therapy serial Gd-T1w MRI scans are then acquired for longitudinal treatment evaluation. Accurate tumor volume change quantification is required for treatment efficacy evaluation and for treatment continuation.

Method

We present a new algorithm for the automatic segmentation and volumetric assessment of meningioma in post-therapy Gd-T1w MRI scans. The inputs are the pre- and post-therapy Gd-T1w MRI scans and the meningioma delineation in the pre-therapy scan. The output is the meningioma delineations and volumes in the post-therapy scan. The algorithm uses the pre-therapy scan and its meningioma delineation to initialize an extended Chan–Vese active contour method and as a strong patient-specific intensity and shape prior for the post-therapy scan meningioma segmentation. The algorithm is automatic, obviates the need for independent tumor localization and segmentation initialization, and incorporates the same tumor delineation criteria in both the pre- and post-therapy scans.

Results

Our experimental results on retrospective pre- and post-therapy scans with a total of 32 meningiomas with volume ranges 0.4–26.5 cm\(^{3}\) yield a Dice coefficient of \(87.0\, \pm \, 6.2\)% with respect to ground-truth delineations in post-therapy scans created by two clinicians. These results indicate a high correspondence to the ground-truth delineations.

Conclusion

Our algorithm yields more reliable and accurate tumor volume change measurements than other stand-alone segmentation methods. It may be a useful tool for quantitative meningioma prognosis evaluation after SRS.

Keywords

Longitudinal stereotactic radiosurgery evaluation Brain tumors segmentation in MRI scans Meningioma Chan–Vese segmentation method 

Notes

Acknowledgements

This work was partially supported by Grant 53681 from the Israel Ministry of Science, Technology and Space entitled: METASEG: a new medical image segmentation paradigm for clinical decision support and big data radiology.

Compliance with ethical standards

Conflict of interest

None of the authors has any conflict of interest. The authors have no personal financial or institutional interest in any of the materials, software or devices described in this article.

Protection of human and animal rights statement

No animals or humans were involved in this research. All scans were anonymized before delivery to the researchers.

References

  1. 1.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16:iv1–iv63. doi: 10.1093/neuonc/nou223 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Saraf S, McCarthy BJ, Villano JL (2011) Update on meningiomas. Oncologist 16:1604–1613. doi: 10.1634/theoncologist.2011-0193 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fink JR, Muzi M, Peck M, Krohn KA (2015) Continuing education: multi-modality brain tumor imaging—MRI, PET, and PET/MRI. J Nucl Med 56:1554–1561. doi: 10.2967/jnumed.113.131516 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ojemann SG, Sneed PK, Larson DA, Gutin PH, Berger MS, Verhey L, Smith V, Petti P, Wara W, Park E, McDermott MW (2000) Radiosurgery for malignant meningioma: results in 22 patients. J Neurosurg 93(Suppl 3):62–67. doi: 10.3171/jns.2000.93.supplement3.0062 PubMedGoogle Scholar
  5. 5.
    Alomari A, Rauch PJ, Orsaria M, Minja FJ, Chiang VL, Vortmeyer AO (2014) Radiologic and histologic consequences of radiosurgery for brain tumors. J Neuro Oncol 117:33–42. doi: 10.1007/s11060-014-1359-8 CrossRefGoogle Scholar
  6. 6.
    Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. doi: 10.3174/ajnr.A1362 PubMedCentralGoogle Scholar
  7. 7.
    Peterson AM, Meltzer CC, Evanson EJ, Flickinger JC, Kondziolka D (1999) MR imaging response of brain metastases after gamma knife stereotactic radiosurgery. Radiology 211:807–814. doi: 10.1148/radiology.211.3.r99jn48807 CrossRefPubMedGoogle Scholar
  8. 8.
    Feigl GC, Samii M, Horstmann GA (2007) Volumetric follow-up of meningiomas: a quantitative method to evaluate treatment outcome of gamma knife radiosurgery. Neurosurgery 61:281–287. doi: 10.1227/01.NEU.0000279999.95953.EA CrossRefPubMedGoogle Scholar
  9. 9.
    Kaley T, Barani I, Chamberlain M, McDermott M, Panageas K, Raizer J (2014) Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol 16:829–840CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Miller AB, Hoogstraten B, Staquet M, Winkler A (2011) Reporting results of cancer treatment. Cancer 47(1):207–214CrossRefGoogle Scholar
  11. 11.
    Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H (2004) Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radiat Oncol Biol Phys 59:300–312. doi: 10.1016/j.ijrobp.2004.01.026 CrossRefPubMedGoogle Scholar
  12. 12.
    Elia AEH, Shih HA, Loeffler JS (2007) Stereotactic radiation treatment for benign meningiomas. Neurosurg Focus 23:E5. doi: 10.3171/foc.2007.23.4.6 CrossRefPubMedGoogle Scholar
  13. 13.
    Maclean J, Fersht N, Short S (2014) Controversies in radiotherapy for meningioma. Clin Oncol 26:51–64. doi: 10.1016/j.clon.2013.10.001 CrossRefGoogle Scholar
  14. 14.
    Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. doi: 10.1016/j.mri.2013.05.002 PubMedGoogle Scholar
  15. 15.
    Liu T, Xu H, Jin W, Liu Z, Zhao Y, Tian W (2014) Medical image segmentation based on a hybrid region-based active contour model. Comput Math Methods Med. doi: 10.1155/2014/890725 Google Scholar
  16. 16.
    Lu X, Li X (2014) Group sparse reconstruction for image segmentation. Neurocomputing 136:41–48. doi: 10.1016/j.neucom.2014.01.034 CrossRefGoogle Scholar
  17. 17.
    Shen J, Du Y, Wang W, Li X (2014) Lazy random walks for superpixel segmentation. IEEE Trans Image Process 23:1451–1462. doi: 10.1109/TIP.2014.2302892 CrossRefPubMedGoogle Scholar
  18. 18.
    Yang X, Gao X, Tao D, Li X, Li J (2015) An efficient MRF embedded level set method for image segmentation. IEEE Trans Image Process 24:9–21. doi: 10.1109/TIP.2014.2372615 CrossRefPubMedGoogle Scholar
  19. 19.
    Menze B, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Reyes M, Leemput Van (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRefPubMedGoogle Scholar
  20. 20.
    Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz F, Kikinis R (2001) Automated segmentation of MR images of brain tumors. Radiology 218:586–591. doi: 10.1148/radiology.218.2.r01fe44586 CrossRefPubMedGoogle Scholar
  21. 21.
    Ho S, Bullitt E, Gerig G (2002) Level-set evolution with region competition: automatic 3D segmentation of brain tumors. Serv Robot 1:3–6. doi: 10.1109/ICPR.2002.1044788 Google Scholar
  22. 22.
    Sanjuan A, Price CJ, Mancini L, Josse G, Grogan A, Yamamoto AK, Geva S, Leff AP, Yousry TA, Seghier ML (2013) Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors. Front Neurosci. doi: 10.3389/fnins.2013.00241 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ, Wong JM (2011) Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak 11:54. doi: 10.1186/1472-6947-11-54 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lankton S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17:2029–2039. doi: 10.1109/TIP.2008.2004611 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang G, Xu J, Dong Q, Pan Z (2014) Active contour model coupling with higher order diffusion for medical image segmentation. Int J Biomed Imaging 2014:237648. doi: 10.1155/2014/237648 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Paragios N, Chen Y, Faugeras O (2005) Handbook of mathematical models in computer vision. Section on boundary extraction, segmentation, and grouping. Springer, vol XXXIII, 605. doi: 10.1007/0-387-28831-7
  27. 27.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79. doi: 10.1023/A:1007979827043 CrossRefGoogle Scholar
  28. 28.
    Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 430–436. doi: 10.1109/CVPR.2005.213
  29. 29.
    Mishra AK, Fieguth PW, Clausi DA (2011) Decoupled active contour (DAC) for boundary detection. IEEE Trans Pattern Anal Mach Intell 33:310–324. doi: 10.1109/TPAMI.2010.83 CrossRefPubMedGoogle Scholar
  30. 30.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10:266–277. doi: 10.1109/83.902291 CrossRefPubMedGoogle Scholar
  31. 31.
    Li C, Kao CY, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition. doi: 10.1109/CVPR.2007.383014
  32. 32.
    Shi Y, Karl WC (2005) Real-time tracking using level sets. IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:20–25. doi: 10.1109/CVPR.2005.294 Google Scholar
  33. 33.
    Wu H, Appia V, Yezzi A (2013) Numerical conditioning problems and solutions for nonparametric i.i.d. statistical active contours. IEEE Trans Pattern Anal Mach Intell 35:1298–1311. doi: 10.1109/TPAMI.2012.207 CrossRefPubMedGoogle Scholar
  34. 34.
    Yezzi A, Tsai A, Willsky A (2002) A fully global approach to image segmentation via coupled curve evolution equations. J Vis Commun Image Represent 13:195–216. doi: 10.1006/jvci.2001.0500 CrossRefGoogle Scholar
  35. 35.
    Mumford D, Shah JM (1985) Boundary detection by minimizing functionals. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 137–154Google Scholar
  36. 36.
    Weizman L, Ben-Sira L, Joskowicz L, Precel R, Constantini S, Ben-Bashat D (2010) Automatic segmentation and components classification of optic pathway gliomas in MRI. Lecture notes in computer science, pp 103–110. doi: 10.1007/978-3-642-15705-9_13
  37. 37.
    Weizman L, Ben Sira L, Joskowicz L, Constantini S, Precel R, Shofty B, Ben Bashat D (2012) Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16:177–188. doi: 10.1016/j.media.2011.07.001 CrossRefPubMedGoogle Scholar
  38. 38.
    Weizman L, Ben Sira L, Joskowicz L, Rubin DL, Yeom KW, Constantini S, Shofty B, Ben Bashat D (2014) Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Med Phys 41:52303. doi: 10.1118/1.4871040 CrossRefGoogle Scholar
  39. 39.
    Meier R, Bauer S, Slotboom J, Wiest R, Reyes M (2014) Patient-specific semi-supervised learning for postoperative brain tumor segmentation. In: Proceedings of medical image computing and computer assisted interventions part 1, pp 714–721Google Scholar
  40. 40.
    Meier R, Knecht U, Loosli T, Bauer S, Slotboom J, Wiest R, Reyes M (2016) Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci Rep 6:23376. doi: 10.1038/srep23376 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Statistical Parametric Mapping. http://www.fil.ion.ucl.ac.uk/spm/. Last visited 7 June 2017
  42. 42.
    Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91. doi: 10.1016/j.mri.2003.09.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Senthilkumaran N, Thimmiaraja J (2014) Histogram equalization for image enhancement using MRI brain images. In: Proceedings of world congress on computing and communication technologies. doi: 10.1109/WCCCT.2014.45
  44. 44.
    Sun X, Shi L, Luo Y, Yang W, Li H, Liang P, Li K, Mok VCT, Chu WCW, Wang D (2015) Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. Biomed Eng Online 14:73. doi: 10.1186/s12938-015-0064-y CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Watts J, Box G, Galvin A, Brotchie P, Trost N, Sutherland T (2014) Magnetic resonance imaging of meningiomas: a pictorial review. Insights Imaging 5:113–122. doi: 10.1007/s13244-013-0302-4 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sheehan JP, Williams BJ, Yen CP (2010) Stereotactic radiosurgery for WHO grade 1 meningiomas. J Neurooncol. doi: 10.1007/s11060-010-0363-x Google Scholar
  47. 47.
    Gao S, Yang J, Yan Y (2012) A local modified chan-vese model for segmenting inhomogeneous multiphase images. Int J Imaging Syst Technol 22:103–113. doi: 10.1002/ima.22010 CrossRefGoogle Scholar
  48. 48.
    Sagan H (2012) Introduction to the calculus of variations. Dover Books, MineolaGoogle Scholar
  49. 49.
    Rommelse JR, Lin HX, Chan TF (2010) Efficient active contour and k-means algorithms in image segmentation. Sci Program. doi: 10.1155/2004/701965 Google Scholar
  50. 50.
    Evaluate Segmentation Tool software package of the VISCERAL Challenge. http://www.visceral.eu. Last visited 7 June 2017
  51. 51.
    iPlan Treatment Planning software package, BrainLab, Germany. https://www.brainlab.com/en/radiosurgery-products/iplan-rt-treatment-planning-software/. Last visited 7 June 2017
  52. 52.
    Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302. doi: 10.2307/1932409 CrossRefGoogle Scholar
  53. 53.
    Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. doi: 10.1109/34.232073 Google Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of RadiologyHadassah University Medical CenterEin-Karem, JerusalemIsrael
  3. 3.Department of NeurosurgeryHadassah University Medical CenterEin-Karem, JerusalemIsrael
  4. 4.CASMIP Lab – Computer Aided Surgery and Medical Image Processing Laboratory, The Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations