Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection

  • Hiroyuki Chinbe
  • Takeshi Yoneyama
  • Tetsuyou Watanabe
  • Katsuyoshi Miyashita
  • Mitsutoshi Nakada
Original Article

Abstract

Purpose

Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback.

Methods

First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material.

Results

The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue.

Conclusion

The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.

Keywords

Neurosurgery Robotic surgery Brain tumor Manipulator Force feedback 

References

  1. 1.
    Cuschieri A (1995) Whither minimal access surgery: tribulations and expectations. Am J Surg 169:9–19. doi:10.1016/S0002-9610(99)80104-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Moreno-Egea A, Torralba JA, Morales G, Fernandez T, Guzman P, Hita G, Girela E, Corral M, Campillo A, Aguayo JL (2005) Laparoscopic repair of secondary lumbar hernias: open vs. laparoscopic surgery. A prospective, nonrandomized study. Cir Esp 77:159–162. doi:10.1016/S0009-739X(05)70828-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Chiu LH, Chen CH, Tu PC, Chang CW, Yen YK, Liu WM (2015) Comparison of robotic surgery and laparoscopy to perform total hysterectomy with pelvic adhesions or large uterus. J Minim Access Surg 11:87. doi:10.4103/0972-9941.147718 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nguan C, Girvan A, Luke PP (2008) Robotic surgery versus laparoscopy: a comparison between two robotic systems and laparoscopy. J Robot Surg 1:263–268. doi:10.1007/s11701-007-0050-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bodner J, Augustin F, Wykypiel H, Fish J, Muehlmann G, Wetscher G, Schmid T (2005) The da Vinci robotic system for general surgical applications: a critical interim appraisal. Swiss Med Wkly 135:674–678. doi: 10.4414/smw.2005.11022
  6. 6.
    Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery. Ann Surg 239:14–21. doi:10.1097/01.sla.0000103020.19595.7d CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Herron DM, Marohn M, Group TS-MRSC (2008) A consensus document on robotic surgery. Surg Endosc 22:313–325. doi:10.1007/s00464-007-9727-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD (2015) Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control 22:352–359PubMedGoogle Scholar
  9. 9.
    Sutherland GR, Wolfsberger S, Lama S, Zarei-Nia K (2013) The evolution of neuroArm. Neurosurgery 72:27–32. doi:10.1227/NEU.0b013e318270da19 CrossRefPubMedGoogle Scholar
  10. 10.
    Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K (2013) Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg 118:521–529. doi:10.3171/2012.11.JNS12877 CrossRefPubMedGoogle Scholar
  11. 11.
    Goto T, Miyahara T, Toyoda K, Okamoto J, Kakizawa Y, Koyama J, Fujiie MG, Hongo K (2009) Telesurgery of microscopic micromanipulator system NeuRobot in neurosurgery: interhospital preliminary study. J Brain Dis 1:45–53PubMedPubMedCentralGoogle Scholar
  12. 12.
    Goto T, Hongo K, Kakizawa Y, Muraoka H, Miyairi Y, Tanaka Y, Kobayashi S (2003) Clinical application of robotic telemanipulation system in neurosurgery. Case report. J Neurosurg 99:1082–1084. doi:10.3171/jns.2003.99.6.1082 CrossRefPubMedGoogle Scholar
  13. 13.
    Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, Baek YM, Takahashi H, Harada K (2013) Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot Comput Assist Surg 9:180–189. doi:10.1002/rcs.1434 CrossRefGoogle Scholar
  14. 14.
    Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Yoshida J, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6:375–385. doi:10.1007/s11548-010-0514-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, Arata J, Baba S, Takahashi H, Mochizuki R, Kirino T (2005) Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103:320–327. doi:10.3171/jns.2005.103.2.0320 CrossRefPubMedGoogle Scholar
  16. 16.
    Okayasu H, Okamoto J, Fujie MG, Umezu M, Iseki H (2003) Development of a hydraulic-driven flexible manipulator for neurosurgery. Int Congr Ser 1256:607–612. doi:10.1016/S0531-5131(03)00324-8 CrossRefGoogle Scholar
  17. 17.
    Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 19:102–107. doi:10.1097/MOU.0b013e32831a478c CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alleblas CCJ, Vleugels MPH, Nieboer TE (2016) Ergonomics of laparoscopic graspers and the importance of haptic feedback: the surgeons’ perspective. Gynecol Surg 13:379–384. doi:10.1007/s10397-016-0959-z CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tholey G, Desai JP, Castellanos AE (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241:102–109. doi:10.1097/01.sla.0000149301.60553.1e
  20. 20.
    Wagner CR, Stylopoulos N, Howe RD (2002) The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the 10th symposium haptic interfaces virtual environ teleoperator syst HAPTICS 2002, pp 68–74. doi:10.1109/HAPTIC.2002.998943
  21. 21.
    MacFarlane M, Rosen J, Hannaford B, Pellegrini C, Sinanan M (1999) Force-feedback grasper helps restore sense of touch in minimally invasive surgery. J Gastrointest Surg 3:278–285CrossRefPubMedGoogle Scholar
  22. 22.
    Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2011) Force detecting gripper and flexible micro manipulator for neurosurgery. In: 2011 Annual international conference of the ieee engineering in medicine and biology society. IEEE, pp 6695–6699Google Scholar
  23. 23.
    Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2013) Force-detecting gripper and force feedback system for neurosurgery applications. Int J Comput Assist Radiol Surg 8:819–829. doi:10.1007/s11548-012-0807-1 CrossRefPubMedGoogle Scholar
  24. 24.
    Dehaene S (2003) The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn Sci 7:145–147. doi:10.1016/S1364-6613(03)00055-X CrossRefPubMedGoogle Scholar
  25. 25.
    Kanada Y, Yoneyama T, Watanabe T, Kagawa H, Sugiyama N, Tanaka K, Hanyu T (2013) Force feedback manipulating system for neurosurgery. Proced CIRP 5:133–136. doi:10.1016/j.procir.2013.01.027 CrossRefGoogle Scholar
  26. 26.
    Fujihira Y, Hanyu T, Kanada Y, Yoneyama T, Watanabe T, Kagawa H (2014) Gripping force feedback system for neurosurgery. Int J Autom Technol 8:83–94. doi:10.20965/ijat.2014.p0083 CrossRefGoogle Scholar
  27. 27.
    Chinbe H, Yoneyama T, Watanabe T, Nakada M (2016) Haptic threshold for pulling force feedback on surgeon’s fingertip in medical robotic systems. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, pp 767–772Google Scholar
  28. 28.
    Soza G, Grosso R, Nimsky C, Hastreiter P, Fahlbusch R, Greiner G (2005) Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int J Med Robot 1:87–95. doi:10.1002/rcs.32 CrossRefPubMedGoogle Scholar
  29. 29.
    Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR, Ehman RL (2008) Magnetic resonance elastography of the brain. Neuroimage 39:231–237. doi:10.1016/j.neuroimage.2007.08.030 CrossRefPubMedGoogle Scholar
  30. 30.
    Hatzfeld C, Werthschütxky R (2010) Vibrotactile force perception thresholds at the fingertip. In: Haptics: generating and perceiving tangible sensations, pp 99–104. doi:10.1007/978-3-642-14064-8_15

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringKanazawa UniversityKanazawaJapan
  2. 2.Department of Neurosurgery Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan

Personalised recommendations