ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment

  • Tobias Frank
  • Axel Krieger
  • Simon Leonard
  • Niravkumar A. Patel
  • Junichi Tokuda
Original Article



With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing.


A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms.


Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer.


The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.


ROS OpenIGTLink Interface Surgical robot Image-guided therapy 



This study was supported in part by the National Institutes of Health (R01EB020667, R01CA111288, R01EB020610, P41EB015898). The authors thank Mr. Longquan Chen of Brigham and Women’s Hospital for his technical support. The authors also thank Ms. Christina Choi for evaluating the rapid prototyping platform with Lego Mindstorms.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal or human rights

No animal or human study was performed in this study.


  1. 1.
    Beasley RA (2012) Medical robots: current systems and research directions, pp 1–14Google Scholar
  2. 2.
    Trinh QD, Sammon J, Sun M, Ravi P, Ghani KR, Bianchi M, Jeong W, Shariat SF, Hansen J, Schmitges J, Jeldres C, Rogers CG, Peabody JO, Montorsi F, Menon M, Karakiewicz PI (2012) Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: results from the nationwide inpatient sample. Eur Urol 61(4):679–685CrossRefPubMedGoogle Scholar
  3. 3.
    Shurrab M, Schilling R, Gang E, Khan EM, Crystal E (2014) Robotics in invasive cardiac electrophysiology. Expert Rev Med Devices 11(4):375–381CrossRefPubMedGoogle Scholar
  4. 4.
    de Ruiter QMB, Moll FL, van Herwaarden JA (2015) Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair. J Vasc Surg 61(1):256–264CrossRefPubMedGoogle Scholar
  5. 5.
    Dieterich S, Gibbs IC (2011) The CyberKnife in clinical use: current roles, future expectations. Front Radiat Ther Oncol 43:181–194CrossRefPubMedGoogle Scholar
  6. 6.
    Moustris GP, Hiridis SC, Deliparaschos KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot Comput Assist Surg 7(4):375–392CrossRefGoogle Scholar
  7. 7.
    Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337ra64CrossRefPubMedGoogle Scholar
  8. 8.
    Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating system. ICRA workshop on open source software 3(3.2):5Google Scholar
  9. 9.
    Hannaford B, Rosen J, Friedman DW, King H, Roan P, Cheng L, Glozman D, Ma J, Kosari SN, White L (2013) Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng 60(4):954–959CrossRefPubMedGoogle Scholar
  10. 10.
    Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, DiMaio SP (2014) An open-source research kit for the da Vinci® surgical system. In 2014 IEEE international conference on robotics and automation (ICRA), 6434–6439. IEEEGoogle Scholar
  11. 11.
    Leonard S, Wu KL, Kim Y, Krieger A, Kim Peter CW (2014) Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng 61(4):1305–1317CrossRefPubMedGoogle Scholar
  12. 12.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JCC, Pujol S, Bauer C, Jennings D, Fiona F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Enquobahrie A, Cheng P, Gary K, Ibanez L, Gobbi D, Lindseth F, Yaniv Z, Aylward S, Jomier J, Cleary K (2007) The image-guided surgery toolkit IGSTK: an open source C++ software toolkit. J Digit Imaging 20(Suppl 1):21–33CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nolden M, Zelzer S, Seitel Al, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg 8(4):607–620CrossRefPubMedGoogle Scholar
  15. 15.
    Clarkson MJ, Zombori G, Thompson S, Totz J, Song Yi, Espak M, Johnsen S, Hawkes D, Ourselin S (2015) The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging. Int J Comput Assist Radiol Surg 10(3):301–316CrossRefPubMedGoogle Scholar
  16. 16.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Paladini G, Azar FS (2009) An extensible imaging platform for optical imaging applications. In: SPIE BiOS: biomedical optics, International Society for Optics and Photonics, p 717108Google Scholar
  18. 18.
    Egger J, Tokuda J, Chauvin L, Freisleben B, Nimsky C, Kapur T, Wells W (2012) Integration of the OpenIGTLink network protocol for image-guided therapy with the medical platform MeVisLab. Int J Med Robot 8(3):282–290CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tokuda J, Fischer G, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot Comput Assist Surg 5(4):423–434CrossRefGoogle Scholar
  20. 20.
    Correll K, Barendt K, Branicky M (2005) Design considerations for software only implementations of the IEEE 1588 precision time protocol. In Conference on IEEE 1588, pp 11–15.
  21. 21.
    Mills DL (1991) Internet time synchronization: the network time protocol. IEEE Trans commun 39(10):1482–1493CrossRefGoogle Scholar
  22. 22.
    Pace D, Kikinis R, Hata N (2007) An accessible, hands-on tutorial system for image-guided therapy and medical robotics using a robot and open-source software. Int Conf Med Image Comput Comput Assist Interv 10(WS):122–141Google Scholar
  23. 23.
    Jomier J, Ibanez L, Enquobahrie A, Pace D, Cleary K (2009) An open-source framework for testing tracking devices using Lego Mindstorms. In: SPIE Medical Imaging, International Society for Optics and Photonics, p 72612SGoogle Scholar
  24. 24.
    Leonard S, Shademan A, Kim Y, Krieger A, Kim PCW (2014) Smart tissue anastomosis robot (star): accuracy evaluation for supervisory suturing using near-infrared fluorescent markers. In: IEEE international conference on robotics and automation, (ICRA 2014)Google Scholar
  25. 25.
  26. 26.
    Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH (2006) BioImage suite: an integrated medical image analysis suite: an update. Insight J 2006:209PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lu T, Liang P, Wu WB, Xue J, Lei CL, Li YY, Sun YN, Liu FY (2012) Integration of the image-guided surgery toolkit (IGSTK) into the medical imaging interaction toolkit (MITK). J Digit Imaging 25(6):729–737CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Klemm M, Kirchner T, Grhl J, Cheray D, Nolden M, Seitel A, Hoppe H, Maier-Hein L, Franz AM (2017) MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions. Int J Comput Assist Radiol Surg 12(3):351–361Google Scholar
  29. 29.
    Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Askeland C, Solberg OV, Bakeng JBL, Reinertsen I, Tangen GA, Hofstad EF, Iversen DH, Vpenstad C, Selbekk T, Lang T, Hernes TAN, Leira HO, Unsgrd G, Lindseth F (2016) CustusX: an open-source research platform for image-guided therapy. Int J Comput Assist Radiol Surg 11(4):505–519CrossRefPubMedGoogle Scholar
  31. 31.
    Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R, Nigris DD, Briault S, Arbel T, Sirhan D, Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMaestro RF, Collins DL (2017) IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 12(3):363–378CrossRefPubMedGoogle Scholar
  32. 32.
    Deguet A, Kumar R, Taylor R, Kazanzides P The cisst libraries for computer assisted intervention systems. In: MICCAI workshop on systems and arch. for computer assisted interventions, (2008)Google Scholar
  33. 33.
    Bihlmaier A, Beyl T, Nicolai P, Kunze M, Mintenbeck J, Schreiter L, Brennecke T, Hutzl J, Raczkowsky J, W\({\ddot{\rm o}}\)rn H (2016) ROS-based cognitive surgical robotics. In Koubaa A (ed) Robot operating system (ROS), vol. 625 in studies in computational intelligence. Springer, Heidelberg, pp 317–342. doi: 10.1007/978-3-319-26054-9_12
  34. 34.
    Frank T (2016) ROS-IGTL-Bridge source code GitHub repository

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.Institute of Mechatronic SystemsGottfried Wilhelm Leibniz Universität HannoverHannoverGermany
  2. 2.Sheikh Zayed Institute for Pediatric Surgical InnovationChildrens National Health SystemWashingtonUSA
  3. 3.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA
  4. 4.Automation and Interventional Medicine (AIM) LaboratoryWorcester Polytechnic InstituteWorcesterUSA
  5. 5.Department of RadiologyBrigham and Womens Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations