Skip to main content

Advertisement

Log in

Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Reduction is a crucial step in the surgical treatment of bone fractures. Finding an optimal path for restoring anatomical alignment is considered technically demanding because collisions as well as high forces caused by surrounding soft tissues can avoid desired reduction movements. The repetition of reduction movements leads to a trial-and-error process which causes a prolonged duration of surgery. By planning an appropriate reduction path—an optimal sequence of target-directed movements—these problems should be overcome. For this purpose, a computer-based method has been developed.

Methods

Using the example of simple femoral shaft fractures, 3D models are generated out of CT images. A reposition algorithm aligns both fragments by reconstructing their broken edges. According to the criteria of a deduced planning strategy, a modified A*-algorithm searches collision-free route of minimal force from the dislocated into the computed target position. Muscular forces are considered using a musculoskeletal reduction model (OpenSim model), and bone collisions are detected by an appropriate method.

Results

Five femoral SYNBONE models were broken into different fracture classification types and were automatically reduced from ten randomly selected displaced positions. Highest mean translational and rotational error for achieving target alignment is \(1.2 \pm 0.9\,\hbox {mm}\) and \(2.6^{\circ } \pm 2.8^{\circ }\). Mean value and standard deviation of occurring forces are \(15.83 \pm 5.05\,\hbox {N}\) for M. tensor fasciae latae and \(3.53 \pm 1.8\,\hbox {N}\) for M. semitendinosus over all trials. These pathways are precise, collision-free, required forces are minimized, and thus regarded as optimal paths.

Conclusions

A novel method for planning reduction paths under consideration of collisions and muscular forces is introduced. The results deliver additional knowledge for an appropriate tactical reduction procedure and can provide a basis for further navigated or robotic-assisted developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gösling T, Westphal R, Faülstich J, Sommer K, Wahl F, Krettek C, Hüfner T (2006) Forces and torques during fracture reduction: intraoperative measurements in the femur. J Orthop Res 24(3):333–338. doi:10.1002/jor.20045

    Article  PubMed  Google Scholar 

  2. Rüedi T, Buckley RE, Morgan CG (2007) AO principles of fracture management, books and DVD, 2nd edn. Thieme; AO Pub., Stuttgart

    Google Scholar 

  3. Citak M, Gardner MJ, Citak M, Krettek C, Hüfner T, Kendoff D (2008) Navigated femoral anteversion measurements: a new intraoperative technique. Inj Int J Care Inj 39(4):467–471

    Article  Google Scholar 

  4. Joskowicz L, Milgrom C, Simkin A, Tockus L, Yaniv Z (1998) FRACAS: a system for computer-aided image-guided long bone fracture surgery. Comput Aided Surg 3(6):271–288. doi:10.3209/10929089809148148

    Article  CAS  PubMed  Google Scholar 

  5. Dagnino G, Georgilas I, Tarassoli P, Atkins R, Dogramadzi S (2015) Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery. Int J Comput Assist Radiol Surg 11(3):437–455. doi:10.1007/s11548-015-1296-9

    Article  PubMed  Google Scholar 

  6. Westphal R (2007) Sensor based surgical robotics. Contributions to robot assisted fracture reduction, Shaker, Aachen

  7. Oszwald M, Westphal R, Bredow Calafi A, Hüfner T, Wahl F, Krettek C, Gosling T (2010) Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: an experimental study on human cadaver femora. J Orthop Res 28(9):1240–1244. doi:10.1002/jor.21118

    Article  PubMed  Google Scholar 

  8. Graham AE, Xie SQ, Aw KC, Xu WL, Mukherjee S (2008) Robotic long bone fracture reduction. In: Bozovic V (ed) Medical robotics. I-Tech Education and Publishing, Vienna, pp 85–102

  9. Graham AE, Xie SQ, Aw KC, Xu WL, Mukherjee S (2006) Design of a parallel long bone fracture reduction robot with planning treatment tool. In: Proceedings of the 2006 IEEE/RSJ; international conference on intelligent robots and systems, pp 1255–1260

  10. Joung S, Kamon H, Liao H, Iwaki J, Nakazawa T, Mitsuishi M, Nakajima Y, Koyama T, Sugano N, Maeda Y, Bessho M Ohashi S, Matsumoto T, Ohnishi I, Sakum I (2008) A robot assisted hip fracture reduction with a navigation system. In: Medical image computing and computer-assisted intervention—MICCAI 2008. Springer, Berlin, pp 501–508

  11. Ye R, Chen Y (2009) Development of a six degree of freedom (DOF) hybrid robot for femur shaft fracture reduction. In: Proceedings of the 2008 IEEE—international conference on robotics and biomimetics, pp 306–321

  12. Mitsuishi M, Sugita N, Warisawa S, Ishizuka T, Nakazawa T, Sugano N, Yenenobu K, Sakuma I (2005) Development of a computer-integrated femoral head fracture reduction system. In: Proceedings of the 2005 IEEE—international conference on mechatronics, pp 834–839

  13. Schmucki D, Gebhard F, Grützner PA, Hüfner T, Langlotz F, Zheng G (2004) Computer aided reduction and imaging. Injury 35(1):96–104

    Article  Google Scholar 

  14. Seide K, Faschingbauer M, Wenzl ME, Weinrich N, Juergens C (2004) A hexapod robot external fixator for computer assisted fracture reduction and deformity correction. IJMRCAS 01(01):64–69. doi:10.1581/mrcas.2004.010101

    Article  CAS  Google Scholar 

  15. Graham AE, Xie SQ (2009) Force compliant trajectory optimization. In: Proceedings of the 2008 IEEE—international conference on robotics and biomimetics, pp 1451–1456

  16. Graham AE, Xie SQ, Aw KC, Mukherjee S, Xu WL (2008) Bone–muscle interaction of the fractured femur. J Orthop Res 26(8):1159–1165. doi:10.1002/jor.20611

    Article  PubMed  Google Scholar 

  17. Ye R, Chen Y (2009) Path planning for robot assisted femur shaft fracture reduction. A preliminary investigation, pp 113–117

  18. Kristen A, Culemann U, Fremd R, Pohlemann T (2008) Visualisierung von Repositionspfaden. Unfallchirurg 111(6):395–402. doi:10.1007/s00113-008-1429-5

    Article  CAS  PubMed  Google Scholar 

  19. Buschbaum J, Fremd R, Pohlemann T, Kristen A (2015) Computer-assisted fracture reduction: a new approach for repositioning femoral fractures and planning reduction paths. Int J CARS 10(2):149–159. doi:10.1007/s11548-014-1011-2

    Article  Google Scholar 

  20. Buschbaum J (2016) Computerassistierte Reposition von Knochenbrüchen: Entwicklung einer Methode zur automatischen Planung von optimalen Repositionspfaden am Beispiel von Femurschaftfrakturen, Doctoral dissertation, Diss., 2015, Universität des Saarlandes

  21. Raschke MJ, Stange R (2012) Femurschaft: Fehlstellungen, Pseudarthrosen und Infektionen. Tscherne Unfallchirurgie. Springer, Berlin. doi:10.1007/978-3-540-68741-2_11

    Google Scholar 

  22. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950. doi:10.1109/TBME.2007.901024

    Article  PubMed  Google Scholar 

  23. Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37(8):757–767

    Article  CAS  PubMed  Google Scholar 

  24. Seth A, Sherman M, Reinbolt JA, Delp SL (2011) OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232. doi:10.1016/j.piutam.2011.04.021

    Article  PubMed  PubMed Central  Google Scholar 

  25. Besl PJ, McKay ND, Schenker PS (1992) A method for reg-istration 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):586–606. doi:10.1117/12.57955

    Article  Google Scholar 

  26. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin

    Book  Google Scholar 

  27. Marsden SP, Swailes DC, Johnson GR (2008) Algorithms for exact multi-object muscle wrapping and application to the deltoid muscle wrapping around the humerus. Proc Inst Mech Eng H J Eng Med 222(7):1081–1095. doi:10.1243/09544119JEIM378

    Article  CAS  Google Scholar 

  28. Holcombe S (2012) Inpolyhedron—are points inside a triangulated volume? MATLAB file exchange. http://ch.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-volume-

  29. Horvat D, Zalik B (2012) Ray-casting point-in-polyhedron test. In: Proceedings of the CESCG 2012: the 16th Central European seminar on computer graphics

  30. Haines E (1994) Point in polygon strategies. In: Heckbert P (ed) Graphics gems IV. Academic Press, Boston, pp 24–26

    Chapter  Google Scholar 

  31. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Premakumar P (2010) A* (A Star) search for path planning tutorial. A tutorial that presents the A* search algorithm for determining the shortest path to a target. MATLAB File Exchange. http://ch.mathworks.com/matlabcentral/fileexchange/26248-a---a-star--search-for-path-planning-tutorial

  33. Vu AT (2014) Path planning algorithms for femoral fracture reduction, Mater Thesis, University of Applied Sciences, Kaiserslautern

  34. Russell S, Canny JF (2004) Künstliche Intelligenz. Ein moderner Ansatz, 1st edn. Informatik. Pearson Studium, München, Boston [u.a.]

  35. Joung S, Shikh SS, Kobayashi E, Ohnishi I, Sakuma I (2011) Musculoskeletal model of hip fracture for safety assurance of reduction path in robot-assisted fracture reduction. In: Abu-Osman NA, Ting H (eds) 5th Kuala Lumpur international conference on biomedical engineering 2011. 20–23 June 2011, Kuala Lumpur, Malaysia, vol 35. Springer, Berlin, pp 116–120

Download references

Acknowledgements

This research project is a cooperative project between the Department of Trauma, Hand and Reconstructive Surgery of the University Hospital of the Saarland and the University of Applied Sciences Kaiserslautern. Our thanks go to both partners, for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Buschbaum.

Ethics declarations

Conflict of interest

Jan Buschbaum, Rainer Fremd, Tim Pohlemann and Alexander Kristen declare that they have no conflict of interest.

Funding

The research project was funded by the Stiftung Rheinland-Pfalz für Innovation (Grant Number: 961-386261/1059).

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buschbaum, J., Fremd, R., Pohlemann, T. et al. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces. Int J CARS 12, 1369–1381 (2017). https://doi.org/10.1007/s11548-017-1562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1562-0

Keywords

Navigation