Enhancement of bone shadow region using local phase-based ultrasound transmission maps

Original Article



Ultrasound is increasingly being employed in different orthopedic procedures as an imaging modality for real-time guidance. Nevertheless, low signal-to-noise-ratio and different imaging artifacts continue to hamper the success of ultrasound-based procedures. Bone shadow region is an important feature indicating the presence of bone/tissue interface in the acquired ultrasound data. Enhancement and automatic detection of this region could improve the sensitivity of ultrasound for imaging bone and result in improved guidance for various orthopedic procedures.


In this work, a method is introduced for the enhancement of bone shadow regions from B-mode ultrasound data. The method is based on the combination of three different image phase features: local phase tensor, local weighted mean phase angle, and local phase energy. The combined local phase image features are used as an input to an \(L_{1}\) norm-based contextual regularization method which emphasizes uncertainty in the shadow regions. The enhanced bone shadow images are automatically segmented and compared against expert segmentation.


Qualitative and quantitative validation was performed on 100 in vivo US scans obtained from five subjects by scanning femur and vertebrae bones. Validation against expert segmentation achieved a mean dice similarity coefficient of 0.88.


The encouraging results obtained in this initial study suggest that the proposed method is promising enough for further evaluation. The calculated bone shadow maps could be incorporated into different ultrasound bone segmentation and registration approaches as an additional feature.


Local phase Local energy Ultrasound Segmentation Bone Enhancement 


Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.


  1. 1.
    Amin DV, Kanade T, Digioia AM, Jaramaz B (2003) Ultrasound registration of the bone surface for surgical navigation. Comput Aided Surg 8(1):1–16CrossRefPubMedGoogle Scholar
  2. 2.
    Anas EMA, Seitel A, Rasoulian A, John PS, Pichora D, Darras K, Wilson D, Lessoway VA, Hacihaliloglu I, Mousavi P, Rohling R, Abolmaesumi P (2015) Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. Int J Comput Assist Radiol Surg 10(6):959–969CrossRefPubMedGoogle Scholar
  3. 3.
    Anas EMA, Seitel A, Rasoulian A, John PS, Ungi T, Lasso A, Darras K, Wilson D, Lessoway VA, Fichtinger G, Rohling R, Abolmaesumi P (2016) Bone enhancement in ultrasound based on 3d local spectrum variation for percutaneous scaphoid fracture fixation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 465–473Google Scholar
  4. 4.
    Barratt DC, Penney GP, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3d-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imaging 25(3):312–323CrossRefPubMedGoogle Scholar
  5. 5.
    Beek M, Abolmaesumi P, Luenam S, Ellis RE, Sellens RW, Pichora DR (2008) Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal 12(2):152–162CrossRefPubMedGoogle Scholar
  6. 6.
    Belaid A, Boukerroui D (2014) \(\alpha \) scale spaces filters for phase based edge detection in ultrasound images. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, pp 1247–1250Google Scholar
  7. 7.
    Berton F, Cheriet F, Miron MC, Laporte C (2016) Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Comput Biol Med 72:201–211CrossRefPubMedGoogle Scholar
  8. 8.
    Brendel B, Winter S, Rick A, Stockheim M, Ermert H (2002) Registration of 3d CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg 7(3):146–155CrossRefPubMedGoogle Scholar
  9. 9.
    Brounstein A, Hacihaliloglu I, Guy P, Hodgson A, Abugharbieh R (2015) Fast and accurate data extraction for near real-time registration of 3-d ultrasound and computed tomography in orthopedic surgery. Ultrasound Med Biol 41(12):3194–3204CrossRefPubMedGoogle Scholar
  10. 10.
    Chen TK, Abolmaesumi P, Pichora DR, Ellis RE (2005) A system for ultrasound-guided computer-assisted orthopaedic surgery. Comput Aided Surg 10(5–6):281–292CrossRefPubMedGoogle Scholar
  11. 11.
    Chung J, Daoud MI, Imani F, Mousavi P, Abolmaesumi P (2012) Gpu accelerated implementation of ultrasound radio-frequency time series analysis. In: SPIE Medical imaging. International Society for Optics and Photonics, pp 83,201I–83,201IGoogle Scholar
  12. 12.
    Daanen V, Tonetti J, Troccaz J (2004) A fully automated method for the delineation of osseous interface in ultrasound images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 549–557Google Scholar
  13. 13.
    Felsberg M, Köthe U (2005) Get: The connection between monogenic scale-space and gaussian derivatives. In: International conference on scale-space theories in computer vision. Springer, pp 192–203Google Scholar
  14. 14.
    Felsberg M, Sommer G (2000) A new extension of linear signal processing for estimating local properties and detecting features. In: Mustererkennung 2000. Springer, pp 195–202Google Scholar
  15. 15.
    Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144CrossRefGoogle Scholar
  16. 16.
    Foroughi P, Boctor E, Swartz MJ, Taylor RH, Fichtinger G (2007) P6d-2 ultrasound bone segmentation using dynamic programming. In: Ultrasonics symposium, 2007. IEEE, pp 2523–2526. IEEEGoogle Scholar
  17. 17.
    Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2009) Bone surface localization in ultrasound using image phase-based features. Ultrasound Med Biol 35(9):1475–1487CrossRefPubMedGoogle Scholar
  18. 18.
    Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2015) Automatic extraction of bone surfaces from 3d ultrasound images in orthopaedic trauma cases. Int J Comput Assist Radiol Surg 10(8):1279–1287CrossRefPubMedGoogle Scholar
  19. 19.
    Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3-d ultrasound to statistical shape+ pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179CrossRefPubMedGoogle Scholar
  20. 20.
    Hacihaliloglu I, Wilson DR, Gilbart M, Hunt MA, Abolmaesumi P (2013) Non-iterative partial view 3d ultrasound to ct registration in ultrasound-guided computer-assisted orthopedic surgery. Int J Comput Assist Radiol Surg 8(2):157–168CrossRefPubMedGoogle Scholar
  21. 21.
    Hott JS, Deshmukh VR, Klopfenstein JD, Sonntag VK, Dickman CA, Spetzler RF, Papadopoulos SM (2004) Intraoperative iso-c c-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54(5):1131–1137CrossRefPubMedGoogle Scholar
  22. 22.
    Jain AK, Taylor RH (2004) Understanding bone responses in b-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. In: Medical imaging 2004. International Society for Optics and Photonics, pp. 131–142Google Scholar
  23. 23.
    Jaramaz B, DiGioia AM III, Blackwell M, Nikou C (1998) Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res 354:70–81CrossRefGoogle Scholar
  24. 24.
    Jia R, Mellon SJ, Hansjee S, Monk A, Murray D, Noble JA (2016)Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, pp 1005–1008Google Scholar
  25. 25.
    Karamalis A, Wein W, Klein T, Navab N (2012) Ultrasound confidence maps using random walks. Med Image Anal 16(6):1101–1112CrossRefPubMedGoogle Scholar
  26. 26.
    Klein T, Wells III WM (2015) Rf ultrasound distribution-based confidence maps. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 595–602Google Scholar
  27. 27.
    Kowal J, Amstutz C, Langlotz F, Talib H, Ballester MG (2007) Automated bone contour detection in ultrasound b-mode images for minimally invasive registration in computer-assisted surgeryan in vitro evaluation. Int J Med Robot Comput Assist Surg 3(4):341–348CrossRefGoogle Scholar
  28. 28.
    Laine T, Schlenzka D, Mäkitalo K, Tallroth K, Nolte LP, Visarius H (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery: a prospective clinical trial of 30 patients. Spine 22(11):1254–1258CrossRefPubMedGoogle Scholar
  29. 29.
    Linsenmaier U, Rock C, Euler E, Wirth S, Brandl R, Kotsianos D, Mutschler W, Pfeifer KJ (2002) Three-dimensional ct with a modified c-arm image intensifier: feasibility 1. Radiology 224(1):286–292CrossRefPubMedGoogle Scholar
  30. 30.
    Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE international conference on computer vision, pp 617–624Google Scholar
  31. 31.
    Mwikirize C, Nosher JL, Hacihaliloglu I (2016) Enhancement of needle tip and shaft from 2d ultrasound using signal transmission maps. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 362–369Google Scholar
  32. 32.
    Nieves J, Bilezikian J, Lane J, Einhorn T, Wang Y, Steinbuch M, Cosman F (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21(3):399–408CrossRefPubMedGoogle Scholar
  33. 33.
    Ozdemir F, Ozkan E, Goksel O (2016) Graphical modeling of ultrasound propagation in tissue for automatic bone segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 256–264Google Scholar
  34. 34.
    Quader N, Hodgson A, Abugharbieh R (2014) Confidence weighted local phase features for robust bone surface segmentation in ultrasound. In: Workshop on clinical image-based procedures. Springer, pp 76–83Google Scholar
  35. 35.
    Rajaee SS, Bae HW, Kanim LE, Delamarter RB (2012) Spinal fusion in the united states: analysis of trends from 1998 to 2008. Spine 37(1):67–76CrossRefPubMedGoogle Scholar
  36. 36.
    Reichl T, Passenger J, Acosta O, Salvado O (2009) Ultrasound goes GPU: real-time simulation using CUDA. In: SPIE medical imaging. International Society for Optics and Photonics, pp 116–726Google Scholar
  37. 37.
    Saragaglia D, Picard F, Chaussard C, Montbarbon E, Leitner F, Cinquin P (2001) [computer-assisted knee arthroplasty: comparison with a conventional procedure. Results of 50 cases in a prospective randomized study]. Rev Chir orthop Repar l’appar Mot 87(1):18–28Google Scholar
  38. 38.
    Slomczykowski MA, Hofstetter R, Sati M, Krettek C, Nolte LP (2001) Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J Orthop Trauma 15(2):122–131CrossRefPubMedGoogle Scholar
  39. 39.
    Stöckle U, König B, Schäffler A, Zschernack T, Haas N (2006) Clinical experience with the siremobil iso-c (3d) imaging system in pelvic surgery. Unfallchirurg 109(1):30–40CrossRefPubMedGoogle Scholar
  40. 40.
    Yan CX, Goulet B, Pelletier J, Chen SJS, Tampieri D, Collins DL (2011) Towards accurate, robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery. Int J Comput Assist Radiol Surg 6(4):523–537Google Scholar
  41. 41.
    Zheng G, Nolte LP (2015) Computer-assisted orthopedic surgery: current state and future perspective. Front Surg 2(66):1–14Google Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of RadiologyRutgers University Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations