Advertisement

A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations

  • Samuel Byeongjun Park
  • Jung-Gun Kim
  • Ki-Woong Lim
  • Chae-Hyun Yoon
  • Dong-Jun Kim
  • Han-Sung Kang
  • Yung-Ho JoEmail author
Original Article

Abstract

Purpose

We developed an image-guided intervention robot system that can be operated in a magnetic resonance (MR) imaging gantry. The system incorporates a bendable needle intervention robot for breast cancer patients that overcomes the space limitations of the MR gantry.

Methods

Most breast coil designs for breast MR imaging have side openings to allow manual localization. However, for many intervention procedures, the patient must be removed from the gantry. A robotic manipulation system with integrated image guidance software was developed. Our robotic manipulator was designed to be slim, so as to fit between the patient’s side and the MR gantry wall. Only non-magnetic materials were used, and an electromagnetic shield was employed for cables and circuits. The image guidance software was built using open source libraries. In situ feasibility tests were performed in a 3-T MR system. One target point in the breast phantom was chosen by the clinician for each experiment, and our robot moved the needle close to the target point.

Results

Without image-guided feedback control, the needle end could not hit the target point (distance = 5 mm) in the first experiment. Using our robotic system, the needle hits the target lesion of the breast phantom at a distance of 2.3 mm from the same target point using image-guided feedback. The second experiment was performed using other target points, and the distance between the final needle end point and the target point was 0.8 mm.

Conclusions

We successfully developed an MR-guided needle intervention robot for breast cancer patients. Further research will allow the expansion of these interventions.

Keywords

Breast cancer Medical robotics Magnetic resonance imaging Needle intervention Bendable needle 

Notes

Acknowledgements

This work was supported by a National Cancer Center Grant (NCC-1410580-3).

Compliance with ethical standards

Funding

This study was funded by the National Cancer Center (NCC-1410580-3).

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical standards

This article does not contain patient data.

References

  1. 1.
    What are the key statistics about breast cancer? American Cancer Society. http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-key-statistics. Accessed 29 Apr 2016
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. doi: 10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  3. 3.
    Warrier S, Tapia G, Goltsman D, Beith J (2016) An update in breast cancer screening and management. Womens Health (Lond Engl) 12(2):229–239. doi: 10.2217/whe.15.105 CrossRefGoogle Scholar
  4. 4.
    Smith M, Zhai X, Harter R, Sisney G, Elezaby M, Fain S (2008) A novel MR-guided interventional device for 3D circumferential access to breast tissue. Med Phys 35(8):3779. doi: 10.1118/1.2952442 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Viale PH (2015) The American Cancer Society guidelines on screening for breast cancer: What’s new? J Adv Pract Oncol 6(6):508–510PubMedPubMedCentralGoogle Scholar
  6. 6.
    Rachetta E, Osano S, Astegiano F, Martincich L (2016) Breast cancer surveillance. Min Ginecol 68(5):509–516Google Scholar
  7. 7.
    Weinstock C, Campassi C, Goloubeva O, Wooten K, Kesmodel S, Bellevance E, Feigenberg S, Ioffe O, Tkaczuk KH (2015) Breast magnetic resonance imaging (MRI) surveillance in breast cancer survivors. Springerplus 4:459. doi: 10.1186/s40064-015-1158-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, Morris E, Pisano E, Schnall M, Sener S, Smith RA, Warner E, Yaffe M, Andrews KS, Russell CA (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2):75–89CrossRefPubMedGoogle Scholar
  9. 9.
    Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K (2013) Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg 118(3):521–529. doi: 10.3171/2012.11.JNS12877 CrossRefPubMedGoogle Scholar
  10. 10.
    Sutherland GR, McBeth PB, Louw DF (2003) NeuroArm: an MR compatible robot for microsurgery. Int Congr Ser 1256:504–508. doi: 10.1016/s0531-5131(03)00439-4 CrossRefGoogle Scholar
  11. 11.
    Cole GA, Harrington K, Su H, Camilo A, Pilitsis JG, Fischer GS (2014) Closed-loop actuated surgical system utilizing real-time in-situ MRI guidance. In: Khatib O, Kumar V, Sukhatme G (eds) Experimental robotics: the 12th international symposium on experimental robotics, vol 79. Springer, Berlin, pp 785–798. doi: 10.1007/978-3-642-28572-1_54 CrossRefGoogle Scholar
  12. 12.
    Li G, Su H, Cole GA, Shang W, Harrington K, Camilo A, Pilitsis JG, Fischer GS (2015) Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng 62(4):1077–1088. doi: 10.1109/TBME.2014.2367233 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krieger A, Iordachita II, Guion P, Singh AK, Kaushal A, Menard C, Pinto PA, Camphausen K, Fichtinger G, Whitcomb LL (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58(11):3049–3060. doi: 10.1109/TBME.2011.2134096 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tokuda J, Song SE, Fischer GS, Iordachita II, Seifabadi R, Cho NB, Tuncali K, Fichtinger G, Tempany CM, Hata N (2012) Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int J Comput Assist Radiol Surg 7(6):949–957. doi: 10.1007/s11548-012-0750-1 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, Cleary K, Stoianovici D (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68(6):1313–1317. doi: 10.1016/j.urology.2006.08.1089 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tokuda J, Fischer GS, DiMaio SP, Gobbi DG, Csoma C, Mewes PW, Fichtinger G, Tempany CM, Hata N (2010) Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput Med Imaging Graph 34(1):3–8. doi: 10.1016/j.compmedimag.2009.07.004 CrossRefPubMedGoogle Scholar
  17. 17.
    Chinzei K, Miller K (2001) Towards MRI guided surgical manipulator. Med Sci Monit 7(1):153–163PubMedGoogle Scholar
  18. 18.
    Koseki Y, Tanikawa T, Chinzei K (2007) MRI-compatible micromanipulator; design and implementation and MRI-compatibility tests. Conf Proc IEEE Eng Med Biol Soc 2007:465–468. doi: 10.1109/IEMBS.2007.4352324 PubMedGoogle Scholar
  19. 19.
    Li M, Kapoor A, Mazilu D, Horvath KA (2011) Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance. IEEE Trans Biomed Eng 58(2):443–451. doi: 10.1109/TBME.2010.2089983 CrossRefPubMedGoogle Scholar
  20. 20.
    Melzer A, Gutmann B, Remmele T, Wolf R, Lukoscheck A, Bock M, Bardenheuer H, Fischer H (2008) INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Magaz 27(3):66–73. doi: 10.1109/EMB.2007.910274 CrossRefGoogle Scholar
  21. 21.
    Yang B, Roys S, Tan UX, Philip M, Richard H, Gullapalli R, Desai JP (2014) Design, development, and evaluation of a Master-Slave surgical system for breast biopsy under continuous MRI. Int J Rob Res 33(4):616–630. doi: 10.1177/0278364913500365 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Eliahou R, Sella T, Allweis T, Samet Y, Libson E, Sklair-Levy M (2009) Magnetic resonance-guided interventional procedures of the breast: initial experience. IMAJ 11:275–279PubMedGoogle Scholar
  23. 23.
    Orel SG, Rosen M, Mies C, Schnall MD (2006) MR imaging-guided 9-gauge vacuum-assisted core-needle breast biopsy: initial experience. Radiology 238(1):54–61. doi: 10.1148/radiol.2381050050 CrossRefPubMedGoogle Scholar
  24. 24.
    Zebic-Sinkovec M, Hertl K, Kadivec M, Cavlek M, Podobnik G, Snoj M (2012) Outcome of MRI-guided vacuum-assisted breast biopsy-initial experience at Institute of Oncology Ljubljana, Slovenia. Radiol Oncol 46(2):97–105. doi: 10.2478/v10019-012-0016-0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing Api: a technical report on ITK-the Insight Toolkit. Stud Health Technol Inform 85:586–592PubMedGoogle Scholar
  26. 26.
    Malaterre M et al (2013) GDCM 2.4.0. http://gdcm.sourceforge.net/2.4/gdcm-2.4.0.pdf. Accessed 29 Apr 2016
  27. 27.
    Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit: an object-oriented approach to 3D graphics, 4th edn. Kitware, New YorkGoogle Scholar
  28. 28.
    Park SB, Kang H-S, Jo Y-H (2013) Robust registration between IR camera and MR image using mutimodal image registration. In: The 5th annual conference of Korean Society of medical robortics, Gangchon, South Korea, 31 May 2013, pp 20–22Google Scholar
  29. 29.
    Kim J-G, Park SB, Yoon C-H, Jo Y-H (2014) Feedback control of parallel robot under unmatched observation coordinate. In: The 10th anniversary asian conference on computer aided surgery (ACCAS 2014), Fukuoka, Japan, June 24–25, pp 70–71Google Scholar
  30. 30.
    Lim K-W, Kim A-Y, Park SB, Jo Y-H (2015) Development of three-dimensional medical image visualization platform for breast biopsy. In: 2015 Summer conference of the institute of electronics and information engineers, Jeju, South Korea, 21–23 Jun 2015, pp 928–929Google Scholar
  31. 31.
    Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNational Cancer CenterGoyang-siRepublic of Korea
  2. 2.Center for Breast CancerNational Cancer CenterGoyang-siRepublic of Korea

Personalised recommendations