Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain

  • Felix Sebastian Leo Thomsen
  • Claudio Augusto Delrieux
  • Rodrigo de Luis-García
Original Article



Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy.


We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer’s disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured.


The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise.


The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.


Local texture Diffusion tensor imaging Alzheimer’s disease White matter 



The authors acknowledge the company QDiagnóstica, Valladolid, Spain, whose facility has been used for data acquisition purposes and thank Dr. Miguel Angel Tola-Arribas for his valuable help with the recruitment and diagnosis of patients.

Funding   Felix Sebastian Leo Thomsen received a doctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET). This work was partially funded by the Universidad Nacional del Sur (PGI 24/K061). Rodrigo de Luis García has received research grants from Ministerio de Ciencia e Innovación of Spain (TEC 2013-44194-P), Fondo de Investigaciones Sanitarias (PI 11-01492) the Consejería de Sanidad de Castilla y León (BIO/VA30/14).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals right

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821CrossRefPubMedGoogle Scholar
  2. 2.
    Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B 103(3):247–254CrossRefGoogle Scholar
  3. 3.
    Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion tensor MRI. J Magn Reson Ser B 111:209–219CrossRefGoogle Scholar
  4. 4.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  5. 5.
    Benn DI (1994) Fabric shape and the interpretation of sedimentary fabric data. J Sediment Res 64(4):910–915Google Scholar
  6. 6.
    Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29(9):2805–2813CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chao Wang JJ, Tc Wai YY, Hsu Y (2006) Novel diffusion anisotropy indices: an evaluation. J Magn Reson Imaging 24(1):211–217CrossRefPubMedGoogle Scholar
  8. 8.
    Ennis DB, Kindlmann G (2006) Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn Reson Med 55(1):136–146CrossRefPubMedGoogle Scholar
  9. 9.
    Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47(6):1083–1099CrossRefPubMedGoogle Scholar
  10. 10.
    Gong G (2013) Local diffusion homogeneity (LDH): an inter-voxel diffusion MRI metric for assessing inter-subject white matter variability. PLoS ONE 8(6):1–11Google Scholar
  11. 11.
    Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL(2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In: Medical image computing and computer-assisted intervention—MICCAI 2006. Springer, pp 58–66Google Scholar
  12. 12.
    Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases—a review. NMR Biomed 15(7–8):570–577CrossRefPubMedGoogle Scholar
  13. 13.
    Jenkinson M, Beckmann C, Behrens T, Woolrich M, Smith S (2012) FSL. Neuroimage 62(2):782–790CrossRefPubMedGoogle Scholar
  14. 14.
    Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254CrossRefPubMedGoogle Scholar
  15. 15.
    Kingsley PB, Monahan WG (2005) Contrast-to-noise ratios of diffusion anisotropy indices. Magn Reson Med 53(4):911–918CrossRefPubMedGoogle Scholar
  16. 16.
    Kochunov P, Thompson P, Lancaster J, Bartzokis G, Smith S, Coyle T, Royall D, Laird A, Fox P (2007) Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: Tract-based spatial statistics study of aging. Neuroimage 35(2):478–487CrossRefPubMedGoogle Scholar
  17. 17.
    Kong XZ (2014) Association between in-scanner head motion with cerebral white matter microstructure: a multiband diffusion-weighted MRI study. Peer J 2:e366CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41(1):15–30CrossRefPubMedGoogle Scholar
  19. 19.
    Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1):96–109CrossRefPubMedGoogle Scholar
  20. 20.
    de Luis-García R, Cabús-Piñol G, Imaz-Roncero C, Argibay-Quiñones D, Barrio-Arranz G, Aja-Fernández S, Alberola López C (2015) Attention deficit/hyperactivity disorder and medication with stimulants in young children: a DTI study. Prog Neuro-Psychopharmacol Biol Psychiatry 57:176–184CrossRefGoogle Scholar
  21. 21.
    Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapp 15(1):1–25CrossRefGoogle Scholar
  22. 22.
    O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22(2):185–196CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S (2009) Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 46(2):486–499CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  25. 25.
    Özarslan E, Vemuri BC, Mareci TH (2005) Generalized scalar measures for diffusion mri using trace, variance, and entropy. Magn Reson Med 53(4):866–876CrossRefPubMedGoogle Scholar
  26. 26.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Medic 36(6):893–906CrossRefGoogle Scholar
  27. 27.
    Rimoldini L (2014) Weighted skewness and kurtosis unbiased by sample size and Gaussian uncertainties. Astron Comput 5:1–8CrossRefGoogle Scholar
  28. 28.
    Salvador R, Peña A, Menon DK, Carpenter TA, Pickard JD, Bullmore ET (2005) Formal characterization and extension of the linearized diffusion tensor model. Human Brain Mapp 24(2):144–155CrossRefGoogle Scholar
  29. 29.
    Sexton CE, Kalu UG, Filippini N, Mackay CE, Ebmeier KP (2011) A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32(12):2322.e5–2322.e18CrossRefGoogle Scholar
  30. 30.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505CrossRefPubMedGoogle Scholar
  31. 31.
    Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44(1):83–98CrossRefPubMedGoogle Scholar
  32. 32.
    Stebbins G, Murphy C (2009) Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behav Neurol 21(1–2):39–49CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tristán-Vega A, Aja-Fernández S (2009) Design and construction of a realistic DWI phantom for filtering performance assessment. In: Medical image computing and computer-assisted intervention—MICCAI 2009. Springer, pp 951–958Google Scholar
  34. 34.
    Tristán-Vega A, Aja-Fernández S (2010) DWI filtering using joint information for DTI and HARDI. Med Image Anal 14(2):205–218CrossRefPubMedGoogle Scholar
  35. 35.
    Tuch DS (2004) Q-ball imaging. Magn Reson Med 52(6):1358–1372CrossRefPubMedGoogle Scholar
  36. 36.
    Vasilić B, Rajapakse CS, Wehrli FW (2009) Classification of trabeculae into three-dimensional rodlike and platelike structures via local inertial anisotropy. Med Phys 36(7):3280–3291CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6(2):93–108CrossRefPubMedGoogle Scholar
  38. 38.
    Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D (2016) Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol Psychiatry 79(4):293–302CrossRefPubMedGoogle Scholar
  39. 39.
    Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B (2014) Spurious group differences due to head motion in a diffusion MRI study. Neuroimage 88:79–90CrossRefPubMedGoogle Scholar
  40. 40.
    Zou KH, Liu A, Bandos AI, Ohno-Machado L, Rockette HE (2011) Statistical evaluation of diagnostic performance: topics in ROC analysis. CRC Press, Boca RatonGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  1. 1.CONICET and Departamento de Ingeniería Eléctrica y ComputadorasUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.ETSI Telecomunicación, Universidad de ValladolidValladolidSpain

Personalised recommendations