Advertisement

Evaluation of a robotic system for irreversible electroporation (IRE) of malignant liver tumors: initial results

  • L. P. BeyerEmail author
  • B. Pregler
  • K. Michalik
  • C. Niessen
  • M. Dollinger
  • M. Müller
  • H. J. Schlitt
  • C. Stroszczynski
  • P. Wiggermann
Original Article

Abstract

Objective

Comparison of conventional CT-guided manual irreversible electroporation (IRE) of malignant liver tumors and a robot-assisted approach regarding procedural accuracy, intervention time, dose, complications, and treatment success.

Methods

A retrospective single-center analysis of 40 cases of irreversible electroporation of malignant liver tumors in 35 patients (6 females, 29 males, average age 60.3 years). Nineteen of these ablation procedures were performed manually and 21 with robotic assistance. A follow-up (ultrasound, CT, and MRI) was performed after 6 weeks in all patients.

Results

The time from the planning CT scan to the start of the ablation as well as the dose-length product were significantly lower under robotic assistance (63.5 vs. 87.4 min, \(p < 0.001\); 2132 vs. 4714 mGy cm, \(p < 0.001\)). The procedural accuracy, measured as the deviation of the IRE probes with respect to a defined reference probe, was significantly higher using robotic guidance (2.2 vs. 3.1 mm, \(p < 0.001\)). There were no complications. There was one incomplete ablation in the manual group.

Conclusion

Robotic assistance for IRE of liver tumors allows for faster procedure times with higher accuracy while reducing radiation dose as compared to the manual placement of IRE probes.

Keywords

Interventional radiology Robotic assistance Irreversible electroporation Liver tumor CT-guided 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was evaluated retrospectively. For this type of study, formal consent is not required.

References

  1. 1.
    Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr (2010) Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 21:S192–203. doi: 10.1016/j.jvir.2010.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shibata T, Niinobu T, Ogata N, Takami M (2000) Microwave coagulation therapy for multiple hepatic metastases from colorectal carcinoma. Cancer 89:276–284CrossRefPubMedGoogle Scholar
  3. 3.
    Tanaka K, Shimada H, Nagano Y, Endo I, Sekido H, Togo S (2006) Outcome after hepatic resection versus combined resection and microwave ablation for multiple bilobar colorectal metastases to the liver. Surgery 139:263–273. doi: 10.1016/j.surg.2005.07.036 CrossRefPubMedGoogle Scholar
  4. 4.
    Goldberg SN, Hahn PF, Tanabe KK, Mueller PR, Schima W, Athanasoulis CA, Compton CC, Solbiati L, Gazelle GS (1998) Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 9:101–111CrossRefPubMedGoogle Scholar
  5. 5.
    Lu DSK, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C (2002) Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR Am J Roentgenol 178:47–51. doi: 10.2214/ajr.178.1.1780047 CrossRefPubMedGoogle Scholar
  6. 6.
    Lu DSK, Yu NC, Raman SS, Limanond P, Lassman C, Murray K, Tong MJ, Amado RG, Busuttil RW (2005) Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver. Radiology 234:954–60. doi: 10.1148/radiol.2343040153 CrossRefPubMedGoogle Scholar
  7. 7.
    Kingham TP, Karkar AM, D’Angelica MI, Allen PJ, DeMatteo RP, Getrajdman GI, Sofocleous CT, Solomon SB, Jarnagin WR, Fong Y (2012) Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J Am Coll Surg 215:379–387. doi: 10.1016/j.jamcollsurg.2012.04.029 CrossRefPubMedGoogle Scholar
  8. 8.
    Davalos RV, Mir ILM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–31CrossRefPubMedGoogle Scholar
  9. 9.
    Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320. doi: 10.1146/annurev-bioeng-071813-104622 CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–20. doi: 10.1109/TBME.2014.2367543
  11. 11.
    Lee EW, Chen C, Prieto VE, Dry SM, Loh CT, Kee ST (2010) Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology 255:426–33. doi: 10.1148/radiol.10090337 CrossRefPubMedGoogle Scholar
  12. 12.
    Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality-clinical implications. Technol Cancer Res Treat 6:37–48CrossRefPubMedGoogle Scholar
  13. 13.
    Martin RCG (2013) Irreversible electroporation of locally advanced pancreatic head adenocarcinoma. J Gastrointest Surg 17:1850–1856. doi: 10.1007/s11605-013-2309-z CrossRefPubMedGoogle Scholar
  14. 14.
    Scheffer HJ, Melenhorst MCAM, Vogel JA, van Tilborg AAJM, Nielsen K, Kazemier G, Meijerink MR (2015) Percutaneous irreversible electroporation of locally advanced pancreatic carcinoma using the dorsal approach: a case report. Cardiovasc Intervent Radiol 38:760–5. doi: 10.1007/s00270-014-0950-x CrossRefPubMedGoogle Scholar
  15. 15.
    Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6:275–86. doi: 10.1177/153303460700600403 CrossRefPubMedGoogle Scholar
  16. 16.
    Ben-David E, Ahmed M, Faroja M, Moussa M, Wandel A, Sosna J, Appelbaum L, Nissenbaum I, Goldberg SN (2013) Irreversible electroporation: treatment effect is susceptible to local environment and tissue properties. Radiology 269:738–47. doi: 10.1148/radiol.13122590 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    van den Bos W, Scheffer HJ, Vogel JA, Wagstaff PGK, de Bruin DM, de Jong MC, van Gemert MJC, de la Rosette JJMCH, Meijerink MR, Klaessens JH, Verdaasdonk RM (2016) Thermal energy during irreversible electroporation and the influence of different ablation parameters. J Vasc Interv Radiol 27:433–443. doi: 10.1016/j.jvir.2015.10.020 CrossRefPubMedGoogle Scholar
  18. 18.
    Mbalisike EC, Vogl TJ, Zangos S, Eichler K, Balakrishnan P, Paul J (2014) Image-guided microwave thermoablation of hepatic tumours using novel robotic guidance: an early experience. Eur Radiol. doi: 10.1007/s00330-014-3398-0 Google Scholar
  19. 19.
    Beyer LP, Pregler B, Niessen C, Dollinger M, Graf BM, Müller M, Schlitt HJ, Stroszczynski C, Wiggermann P (2015) Robot-assisted microwave thermoablation of liver tumors: a single-center experience. Int J Comput Assist Radiol Surg 11:253–259. doi: 10.1007/s11548-015-1286-y CrossRefPubMedGoogle Scholar
  20. 20.
    Omary RA, Bettmann MA, Cardella JF, Bakal CW, Schwartzberg MS, Sacks D, Rholl KS, Meranze SG, Lewis CA (2003) Quality improvement guidelines for the reporting and archiving of interventional radiology procedures. J Vasc Interv Radiol 14:S293–S295CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • L. P. Beyer
    • 1
    Email author
  • B. Pregler
    • 1
  • K. Michalik
    • 1
  • C. Niessen
    • 1
  • M. Dollinger
    • 1
  • M. Müller
    • 2
  • H. J. Schlitt
    • 3
  • C. Stroszczynski
    • 1
  • P. Wiggermann
    • 1
  1. 1.Department of RadiologyUniversity Medical Center RegensburgRegensburgGermany
  2. 2.Department of Internal Medicine IUniversity Medical Center RegensburgRegensburgGermany
  3. 3.Department of SurgeryUniversity Medical Center RegensburgRegensburgGermany

Personalised recommendations