Skip to main content

Planning of mandibular reconstructions based on statistical shape models



The reconstruction of large continuity defects of the mandible is a challenging task, especially when the shape of the missing part is not known prior to operation. Today, the surgical planning is based mainly on visual judgment and the individual skills and experience of the surgeons. The objective of the current study was to develop a computer-based method that is capable of proposing a reconstruction shape from a known residual mandible part.


The volumetric data derived from 60 CT scans of mandibles were used as the basis for the novel numerical procedure. To find a standardized representation of the mandible shapes, a mesh was elaborated that follows the course of anatomical structures with a specially developed topology of quadrilaterals. These standard meshes were transformed with defined mesh modifications toward each individual mandible surface to allow for further statistical evaluations. The data were used to capture the inter-individual shape variations that were considered as random field variations and mathematically evaluated with principal component analysis. With this information of the mandibular shape variations, an algorithm was developed that proposes shapes for reconstruction planning based on given residual mandible geometry parts.


The accuracy of the novel method was evaluated on six different virtually defined continuity defects that were each created on three mandibles that were not part of the initial database. Virtual reconstructions showed sufficient accuracy of the algorithm for the planning of surgical reconstructions, with average deviations toward the actual geometry of \(1.82 \pm 0.11\) mm for small missing parts and 5 mm for large hemi-lateral defects.


The presented algorithm may be a valuable tool for the planning of mandibular reconstructions. The proposed shapes can be used as templates for computer-aided manufacturing, e.g., with 3D printing devices that use biocompatible materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Bak M, Jacobson AS, Buchbinder D, Urken ML (2010) Contemporary reconstruction of the mandible. Oral Oncol 46(2):71–76

    Article  PubMed  Google Scholar 

  2. Juergens P, Klug C, Krol Z, Beinemann J, Kim H, Reyes M, Guevara-Rojas G, Zeilhofer H-F, Ewers R, Schicho K (2011) Navigation-guided harvesting of autologous iliac crest graft for mandibular reconstruction. J Oral Maxillofac Surg 69(11):2915–2923

    Article  PubMed  Google Scholar 

  3. Ayoub N, Ghassemi A, Rana M, Gerressen M, Riediger D, Hölzle F, Modabber A (2014) Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials 15(1):1–14

    Article  Google Scholar 

  4. Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA 107(30):13222–13227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Modabber A, Möhlhenrich SC, Ayoub N, Hajji M, Raith S, Reich S, Steiner T, Ghassemi A, Hölzle F (2015) Computer-aided mandibular reconstruction with vascularized iliac crest bone flap and simultaneous implant surgery. J Oral Implantol 41(5):189–194

    Article  Google Scholar 

  6. Olsson P, Nysjö F, Hirsch J-M, Carlbom IB (2013) A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases. Int J Comput Assist Radiol Surg 8(6):887–894

    Article  PubMed  PubMed Central  Google Scholar 

  7. Król Z, Chlebiej M, Zerfass P, Sader R, Zeilhofer HF, Mikołajczak P, Keeve E (2002) Surgery planning tools for the osseous grafting treatment. Biomed Tech (Berl) 47(Suppl 1):97–100

    Article  Google Scholar 

  8. Modabber A, Gerressen M, Stiller MB, Noroozi N, Füglein A, Hölzle F, Riediger D, Ghassemi A (2012) Computer-assisted mandibular reconstruction with vascularized iliac crest bone graft. Aesthetic Plast Surg 36(3):653–659

    Article  PubMed  Google Scholar 

  9. Modabber A, Gerressen M, Ayoub N, Elvers D, Stromps J-P, Riediger D, Hölzle F, Ghassemi A (2013) Computer-assisted zygoma reconstruction with vascularized iliac crest bone graft. Int J Med Robot Comput Assist Surg 9(4):497–502

    Article  Google Scholar 

  10. Zachow S, Lamecker H, Elsholtz B, Stiller M (2005) Reconstruction of mandibular dysplasia using a statistical 3D shape model. Int Congr Ser 1281:1238–1243

    Article  Google Scholar 

  11. Lamecker H, Zachow S, Wittmers A, Weber B, Hege H, Isholtz B, Stiller M (2006) Automatic segmentation of mandibles in low-dose CT-data. Int J Comput Assist Radiol Surg 1:393

    Google Scholar 

  12. Kainmüller D, Lamecker H, Seim H, Zinser M, Zachow S (2009) Automatic extraction of mandibular nerve and bone from cone-beam CT data. Lect Notes Comput Sci 5762(Part 2):76–83

    Article  Google Scholar 

  13. Kim SG, Yi WJ, Hwang SJ, Choi SC, Lee SS, Heo MS, Huh KH, Kim TI, Hong H, Yoo JH (2012) Development of 3D statistical mandible models for cephalometric measurements. Imaging Sci Dent 42(3):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gollmer ST, Buzug TM (2012) Fully automatic shape constrained mandible segmentation from cone-beam CT data. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI), pp 1272–1275

  15. Lindner M, Bergmann C, Telle R, Fischer H (2014) Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. J Biomed Mater Res A 102(10):3677–3684

    Article  PubMed  Google Scholar 

  16. Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, Woodruff MA, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med 4(141):141ra93. doi:10.1126/scitranslmed.3003720

  17. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  CAS  PubMed  Google Scholar 

  18. Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H (2011) Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6):569–573

    Article  CAS  PubMed  Google Scholar 

  19. Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R (2012) Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J Cranio-Maxillofac Surg 40(8):706–718

    Article  Google Scholar 

  20. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567

    Article  CAS  Google Scholar 

  21. Modabber A, Ayoub N, Möhlhenrich SC, Goloborodko E, Sönmez TT, Ghassemi M, Loberg C, Lethaus B, Ghassemi A, Hölzle F (2014) The accuracy of computer-assisted primary mandibular reconstruction with vascularized bone flaps: iliac crest bone flap versus osteomyocutaneous fibula flap. Med Devices Evid Res 7:211–217

    Article  Google Scholar 

  22. Foley BD, Thayer WP, Honeybrook A, McKenna S, Press S (2013) Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg 71(2):111–119

    Article  Google Scholar 

  23. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  PubMed  Google Scholar 

  24. Chung MK, Qiu A, Seo S, Vorperian HK (2015) Unified heat kernel regression for diffusion. Kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med Image Anal 22(1):63–76

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seiler C, Pennec X, Reyes M (2012) Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med Image Anal 16(7):1371–1384

    Article  PubMed  Google Scholar 

  26. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H-P (2004) Laplacian surface editing. In: Eurographics symposium on geometry processing, pp 175–184

  27. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40(1):33–51

    Article  Google Scholar 

  28. Horn B (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am 4(4):629–642

    Article  Google Scholar 

  29. Wolff S (2014) Robustness evaluation in sheet metal forming using statistics on structures (SoS) and optiSLang. In: Proceedings 32nd German ANSYS and CADFEM users’ meeting

  30. Wolff S (2013) Simulation of random fields in structural design. In: 11th international probabilistic workshop

  31. Kroon DJ (2011) Segmentation of the mandibular canal in cone-beam CT data. PhD thesis Universiteit Twente

  32. Kainmueller D, Lamecker H, Seim H, Zachow S (2009) Multi-object segmentation of head bones. In: MICCAI workshop head and neck auto-segmentation challenge, pp 1–11

  33. Matthies HG, Brenner CE, Bucher C, Guedes Soares C (1997) Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct Saf 19(3):283–336

    Article  Google Scholar 

  34. Matthies HG, Bucher C (1999) Finite elements for stochastic media problems. Comput Methods Appl Mech Eng 168(1–4):3–17

    Article  Google Scholar 

  35. Wendland H (2004) Scattered data approximation: Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

  36. Brenner CE, Bucher C (1995) A contribution to the SFE-based reliability assessment of nonlinear structures under dynamic loading. Probab Eng Mech 10(4):265–273

    Article  Google Scholar 

  37. Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119(6):1136–1154

    Article  Google Scholar 

  38. Bucher C (2009) Computational analysis of randomness in structural mechanics: structures and infrastructures book series, 1st edn. CRC Press, Boca Raton, FL

  39. Nunes RF, Will J, Bayer V, Chittepu K (2009) Robustness Evaluation of brake systems concerned to squeal noise problem. In: Proceedings of the 7th Weimar optimization and stochastic days, pp 1–20

  40. Roos D, Einzinger J, Bayer V (2009) Robust design optimization applied to structural, thermal and fluid analysis including manufacturing tolerances. In: Proceedings of the Weimar optimization and stochastic days

  41. Jewer DD, Boyd JB, Manktelow RT, Zuker RM, Rosen IB, Gullane PJ, Rotstein LE, Freeman JE (1989) Orofacial and mandibular reconstruction with the iliac crest free flap: a review of 60 cases and a new method of classification. Plast Reconstr Surg 84:391–403 (discussion 404–405)

    Article  CAS  PubMed  Google Scholar 

  42. Skadłubowicz P, Król Z, Wróbel Z, Hefti F, Krieg A (2009) Using of statistical shape models for pelvis reconstruction in the oncologic surgery. J Med Informatics Technol 13:151–156

  43. Weaver AA, Moody EA, Armstrong EG, Stitzel JD (2011) Image segmentation and registration algorithm to collect homologous landmarks for age-related thoracic morphometric analysis. Biomed Sci Instrum 47:70–76

    PubMed  Google Scholar 

  44. Weaver AA, Schoell SL, Stitzel JD (2014) Morphometric analysis of variation in the ribs with age and sex. J Anat 225(2):246–261

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cerveri P, Marchente M, Chemello C, Confalonieri N, Manzotti A, Baroni G (2011) Advanced computational framework for the automatic analysis of the acetabular morphology from the pelvic bone surface for hip arthroplasty applications. Ann Biomed Eng 39(11):2791–2806

    Article  PubMed  Google Scholar 

  46. Cootes TF, Beeston C (1999) A unified framework for atlas matching using active appearance models. Inf Process Med Imaging 1613:322–333

    Article  Google Scholar 

  47. Heimann T, Wolf I, Williams T, Meinzer H-P (2005) 3D active shape models using gradient descent optimization of description length. Inf Process Med Imaging 19:566–577

    Article  PubMed  Google Scholar 

  48. Zhang L, Hoffman EA, Reinhardt JM (2006) Atlas-driven lung lobe segmentation in volumetric X-ray CT images. IEEE Trans Med Imaging 25(1):1–16

    Article  PubMed  Google Scholar 

  49. Probst FA, Mast G, Ermer M, Gutwald R, Schmelzeisen R, Pautke C, Otto S, Schiel S, Ehrenfeld M, Cornelius C-P, Metzger MC (2012) MatrixMANDIBLE preformed reconstruction plates—a two-year two-institution experience in 71 patients. J Oral Maxillofac Surg 70(11):657–666

    Article  Google Scholar 

  50. Metzger MC, Vogel M, Hohlweg-Majert B, Mast H, Fan X, Rüdell A, Schlager S (2011) Anatomical shape analysis of the mandible in Caucasian and Chinese for the production of preformed mandible reconstruction plates. J Cranio-Maxillo-Fac Surg 39(6):393–400

    Article  Google Scholar 

  51. Bou-Sleiman H, Iizuka T, Nolte L-P, Reyes M (2013) Population-based design of mandibular fixation plates with bone quality and morphology considerations. Ann Biomed Eng 41(2):377–384

  52. Raith S, Varga V, Steiner T, Hölzle F, Fischer H (2016) Computational geometry assessment for morphometric analysis of the mandible. Comput Methods Biomech Biomed Eng:1–8. doi:10.1080/10255842.2016.1196196

  53. Warnke PH, Springer ING, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo PAJ, Bolte H, Sherry E, Behrens E, Terheyden H (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364(9436):766–770

    Article  CAS  PubMed  Google Scholar 

  54. Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, Russo PAJ, Sherry E, Lützen U, Wolfart S, Terheyden H (2006) Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials 27(17):3163–3167

    Article  CAS  PubMed  Google Scholar 

Download references


We acknowledge financial support of the present study by the German Federal Ministry of Education and Research (Grant No. 13GW0016C). Furthermore, the support of DYNARDO Austria GmbH for providing licenses of the software tools Statistics on Structures and optiSLang is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefan Raith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards (Approval No. 2596/09, Technische Universität München, Germany).

Informed consent

For this type of study, formal consent is not required.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raith, S., Wolff, S., Steiner, T. et al. Planning of mandibular reconstructions based on statistical shape models. Int J CARS 12, 99–112 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Mandible
  • Reconstruction
  • Morphology
  • Scaffolds
  • Random field variations
  • 3D printing