Skip to main content
Log in

Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Real-time magnetic resonance imaging (rtMRI) guidance provides significant advantages during transcatheter aortic valve replacement (TAVR) as it provides superior real-time visualization and accurate device delivery tracking. However, performing a TAVR within an MRI scanner remains difficult due to a constrained procedural environment. To address these concerns, a magnetic resonance (MR)-compatible robotic system to assist in TAVR deployments was developed. This study evaluates the technical design and interface considerations of an MR-compatible robotic-assisted TAVR system with the purpose of demonstrating that such a system can be developed and executed safely and precisely in a preclinical model.

Methods

An MR-compatible robotic surgical assistant system was built for TAVR deployment. This system integrates a 5-degrees of freedom (DoF) robotic arm with a 3-DoF robotic valve delivery module. A user interface system was designed for procedural planning and real-time intraoperative manipulation of the robot. The robotic device was constructed of plastic materials, pneumatic actuators, and fiber-optical encoders.

Results

The mechanical profile and MR compatibility of the robotic system were evaluated. The system-level error based on a phantom model was 1.14 ± 0.33 mm. A self-expanding prosthesis was successfully deployed in eight Yorkshire swine under rtMRI guidance. Post-deployment imaging and necropsy confirmed placement of the stent within 3 mm of the aortic valve annulus.

Conclusions

These phantom and in vivo studies demonstrate the feasibility and advantages of robotic-assisted TAVR under rtMRI guidance. This robotic system increases the precision of valve deployments, diminishes environmental constraints, and improves the overall success of TAVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106(24):3006–3008

    Article  PubMed  Google Scholar 

  2. Adams DH, Popma JJ, Reardon MJ (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 371(10):967–968. doi:10.1056/NEJMc1408396

    Article  PubMed  Google Scholar 

  3. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S, Investigators PT (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607. doi:10.1056/NEJMoa1008232

    Article  CAS  PubMed  Google Scholar 

  4. D’Onofrio A, Rizzoli G, Messina A, Alfieri O, Lorusso R, Salizzoni S, Glauber M, Di Bartolomeo R, Besola L, Rinaldi M, Troise G, Gerosa G (2013) Conventional surgery, sutureless valves, and transapical aortic valve replacement: what is the best option for patients with aortic valve stenosis? A multicenter, propensity-matched analysis. J Thorac Cardiovasc Surg 146(5):1065–1070. doi:10.1016/j.jtcvs.2013.06.047 (discussion 1070-1061)

    Article  PubMed  Google Scholar 

  5. Johansson M, Nozohoor S, Kimblad PO, Harnek J, Olivecrona GK, Sjogren J (2011) Transapical versus transfemoral aortic valve implantation: a comparison of survival and safety. Ann Thorac Surg 91(1):57–63. doi:10.1016/j.athoracsur.2010.07.072

    Article  PubMed  Google Scholar 

  6. Bavalia N, Anis A, Benz M, Maldjian P, Bolanowski PJ, Saric M (2011) Esophageal perforation, the most feared complication of TEE: early recognition by multimodality imaging. Echocardiography 28(3):E56–59. doi:10.1111/j.1540-8175.2010.01291.x

    Article  PubMed  Google Scholar 

  7. Daniel WG, Erbel R, Kasper W, Visser CA, Engberding R, Sutherland GR, Grube E, Hanrath P, Maisch B, Dennig K, Schartl M, Kremer P, Angermann C, Iliceto S, Curtius JM, Mügge A (1991) Safety of transesophageal echocardiography. A multicenter survey of 10,419 examinations. Circulation 83(3):817–821

  8. Kahlert P, Parohl N, Albert J, Schafer L, Reinhardt R, Kaiser GM, McDougall I, Decker B, Plicht B, Erbel R, Eggebrecht H, Ladd ME, Quick HH (2012) Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine. J Cardiovasc Magn Reson 14:21. doi:10.1186/1532-429X-14-21

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lederman RJ (2005) Cardiovascular interventional magnetic resonance imaging. Circulation 112(19):3009–3017. doi:10.1161/CIRCULATIONAHA.104.531368

    PubMed  PubMed Central  Google Scholar 

  10. Horvath KA, Mazilu D, Kocaturk O, Li M (2011) Transapical aortic valve replacement under real-time magnetic resonance imaging guidance: experimental results with balloon-expandable and self-expanding stents. Eur J Cardiothorac Surg 39(6):822–828. doi:10.1016/j.ejcts.2010.09.030

    Article  PubMed  Google Scholar 

  11. McVeigh ER, Guttman MA, Lederman RJ, Li M, Kocaturk O, Hunt T, Kozlov S, Horvath KA (2006) Real-time interactive MRI-guided cardiac surgery: aortic valve replacement using a direct apical approach. Magn Reson Med 56(5):958–964. doi:10.1002/mrm.21044

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eslami S, Shang W, Li G, Patel N, Fischer GS, Tokuda J, Hata N, Tempany CM, Iordachita I (2015) In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int J Med Robot. doi:10.1002/rcs.1671

    PubMed  Google Scholar 

  13. Fischer GS, Iordachita I, Csoma C, Tokuda J, Dimaio SP, Tempany CM, Hata N, Fichtinger G (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE ASME Trans Mechatron 13(3):295–305. doi:10.1109/TMECH.2008.924044

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krieger A, Iordachita II, Guion P, Singh AK, Kaushal A, Menard C, Pinto PA, Camphausen K, Fichtinger G, Whitcomb LL (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58(11):3049–3060. doi:10.1109/TBME.2011.2134096

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patriciu A, Petrisor D, Muntener M, Mazilu D, Schar M, Stoianovici D (2007) Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng 54(8):1499–1506. doi:10.1109/TBME.2007.900816

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stoianovici D, Kim C, Srimathveeravalli G, Sebrecht P, Petrisor D, Coleman J, Solomon SB, Hricak H (2013) MRI-safe robot for endorectal prostate biopsy. IEEE ASME Trans Mechatron 19(4):1289–1299. doi:10.1109/TMECH.2013.2279775

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ho M, McMillan A, Simard JM, Gullapalli R, Desai JP (2011) Towards a meso-scale SMA-actuated MRI-compatible neurosurgical robot. IEEE Trans Robot 99:1–10. doi:10.1109/TRO.2011.2165371

    Google Scholar 

  18. Lang MJ, Greer AD, Sutherland GR (2011) Intra-operative robotics: NeuroArm. Acta Neurochir Suppl 109:231–236. doi:10.1007/978-3-211-99651-5_36

    Article  PubMed  Google Scholar 

  19. Li G, Su H, Cole GA, Shang W, Harrington K, Camilo A, Pilitsis JG, Fischer GS (2015) Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng 62(4):1077–1088. doi:10.1109/TBME.2014.2367233

    Article  PubMed  PubMed Central  Google Scholar 

  20. Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K (1995) Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guided Surg 1(4):242–248. doi:10.1002/(SICI)1522-712X(1995)1:4<242:AID-IGS7>3.0.CO;2-A

    Article  CAS  Google Scholar 

  21. Hempel E, Fischer H, Gumb L, Hohn T, Krause H, Voges U, Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8(4):180–191

    Article  PubMed  Google Scholar 

  22. Tsekos NV, Ozcan A, Christoforou E (2005) A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners. J Biomech Eng 127(6):972–980

    Article  PubMed  Google Scholar 

  23. Li M, Kapoor A, Mazilu D, Horvath KA (2011) Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance. IEEE Trans Biomed Eng 58(2):443–451. doi:10.1109/TBME.2010.2089983

    Article  PubMed  Google Scholar 

  24. Chinzei K, Kikinis R, Jolesz FA (1999) MR compatibility of mechatronic devices: design criteria. In: Medical image computing and computer-assisted intervention–MICCAI’99. Springer, pp 1020–1030

  25. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12(1):2–19

    Article  CAS  PubMed  Google Scholar 

  26. Mazilu D, Li M, Kocaturk O, Horvath KA (2012) Self-expanding stent and delivery system for aortic valve replacement. J Med Device 6(4):410061–410069. doi:10.1115/1.4007750

    Article  PubMed  Google Scholar 

  27. Li M, Mazilu D, Horvath KA (2008) Robotic system for transapical aortic valve replacement with MRI guidance. Med Image Comput Comput Assist Interv 11(Pt 2):476–484

    PubMed  PubMed Central  Google Scholar 

  28. Kapoor A, Wood B, Mazilu D, Horvath KA, Li M (2009) MRI-compatible hands-on cooperative control of a pneumatically actuated robot. IEEE Int Conf Robot Autom 2009:2681–2686. doi:10.1109/ROBOT.2009.5152541

    PubMed  PubMed Central  Google Scholar 

  29. Horvath KA, Mazilu D, Guttman M, Zetts A, Hunt T, Li M (2010) Midterm results of transapical aortic valve replacement via real-time magnetic resonance imaging guidance. J Thorac Cardiovasc Surg 139(2):424–430. doi:10.1016/j.jtcvs.2009.08.005

    Article  PubMed  Google Scholar 

  30. Hamm CW, Arsalan M, Mack MJ (2015) The future of transcatheter aortic valve implantation. Eur Heart J. doi:10.1093/eurheartj/ehv574

  31. Geisbusch S, Bleiziffer S, Mazzitelli D, Ruge H, Bauernschmitt R, Lange R (2010) Incidence and management of CoreValve dislocation during transcatheter aortic valve implantation. Circ Cardiovasc Interv 3(6):531–536. doi:10.1161/CIRCINTERVENTIONS.110.944983

    Article  PubMed  Google Scholar 

  32. Alli O, Rihal CS, Suri RM, Greason KL, Waksman R, Minha S, Torguson R, Pichard AD, Mack M, Svensson LG, Rajeswaran J, Lowry AM, Ehrlinger J, Tuzcu EM, Thourani VH, Makkar R, Blackstone EH, Leon MB, Holmes D (2015) Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: Technical performance. Catheter Cardiovasc Interv. doi:10.1002/ccd.26120

  33. Sider KL, Blaser MC, Simmons CA (2011) Animal models of calcific aortic valve disease. Int J Inflam 2011:364310. doi:10.4061/2011/364310

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goncerz G, Tomaszewski KA, Pasternak A, Glowacki R, Wrobel A, Rokita E, Podolec P (2014) A novel in-vitro model of human aortic valve mineralization. J Heart Valve Dis 23(5):545–549

    PubMed  Google Scholar 

  35. Bowler MA, Merryman WD (2015) In vitro models of aortic valve calcification: solidifying a system. Cardiovasc Pathol 24(1):1–10. doi:10.1016/j.carpath.2014.08.003

    Article  PubMed  Google Scholar 

  36. Honda S, Miyamoto T, Watanabe T, Narumi T, Kadowaki S, Honda Y, Otaki Y, Hasegawa H, Netsu S, Funayama A, Ishino M, Nishiyama S, Takahashi H, Arimoto T, Shishido T, Miyashita T, Kubota I (2014) A novel mouse model of aortic valve stenosis induced by direct wire injury. Arterioscler Thromb Vasc Biol 34(2):270–278. doi:10.1161/ATVBAHA.113.302610

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Dor I, Maluenda G, Dvir D, Barbash IM, Okubagzi P, Torguson R, Lindsay J, Satler LF, Pichard AD, Waksman R (2013) Balloon aortic valvuloplasty for severe aortic stenosis as a bridge to transcatheter/surgical aortic valve replacement. Catheter Cardiovasc Interv 82(4):632–637. doi:10.1002/ccd.24682

    PubMed  Google Scholar 

  38. Ali O, Marmagkiolis K, Cilingiroglu M (2015) Combined rotational atherectomy and aortic balloon valvuloplasty as a bridge to transcatheter aortic valve replacement. Rev Port Cardiol 34(12):775.e1–775.e4. doi:10.1016/j.repc.2015.03.028

    Google Scholar 

  39. Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, Ozturk C, Lederman RJ, Kocaturk O (2012) MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson 14:38. doi:10.1186/1532-429X-14-38

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was made possible by funding from the Intramural Research Program of the National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), US Department of Health and Human Services (DHHS)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflict of interest

All the author declare they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Informed consent

This article does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J.L., Mazilu, D., Miller, J.G. et al. Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model. Int J CARS 11, 1905–1918 (2016). https://doi.org/10.1007/s11548-016-1421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1421-4

Keywords

Navigation