Skip to main content
Log in

Cervical screw placement using rapid prototyping drill templates for navigation: a literature review

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Due to the high screw malposition rate and the potential risk of neurovascular injury in cervical fixation surgeries, guided tools, mainly computer-assisted surgery navigation systems and rapid prototyping drill templates (RPDTs) have increasingly been developed to help surgeons improve screw placement accuracy. Although RPDTs have been used in cervical surgeries for almost 2 decades, no specific review has been performed detailing the state of this technique. Thus, in the current review, we fully discuss the status of applying RPDTs in cervical surgeries.

Methods

Studies that tested the accuracy and reliability of RPDTs in guiding cervical screw placements were included in this review. The fabrication workflow and usage of RPDTs, the accuracy and reliability of using RPDTs for screw and plate placement, the advantages and disadvantages of RPDTs and their prospects for future applications as a part of cervical fixation instrumentation are discussed.

Results

As the design of RPDTs becomes more rational, the accuracy and reliability of these devices have significantly improved in cervical fixation surgeries. Moreover, RPDTs decrease the intraoperative radiation exposure for surgeons and patients relative to conventional methods. However, some disadvantages also exist. The fabrication of RPDTs is time-consuming, and the time required to learn the related software is long.

Conclusion

We believe that because of their merits, the RPDT technique is worth promoting for use in cervical surgeries. However, the time-consuming fabrication workflow and the long period required to learn the related software might limit its widespread use. In the future, the workflow should be simplified to reduce the extra workload for surgeons. Moreover, more clinical studies with high-level evidence are still needed to further test its accuracy and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hojo Y, Ito M, Suda K, Oda I, Yoshimoto H, Abumi K (2014) A multicenter study on accuracy and complications of freehand placement of cervical pedicle screws under lateral fluoroscopy in different pathological conditions: CT-based evaluation of more than 1,000 screws. Eur Spine J 23(10):2166–2174. doi:10.1007/s00586-014-3470-0

    Article  PubMed  Google Scholar 

  2. Fu MQ, Lin LJ, Kong XX, Zhao WD, Tang L, Li JY, Ouyang J (2013) Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS) insertion: an in vitro study. PLoS One 8(1):e53580. doi:10.1371/journal.pone.0053580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goffin J, Van Brussel K, Martens K, Vander Sloten J, Van Audekercke R, Smet MH (2001) Three-dimensional computed tomography-based, personalized drill guide for posterior cervical stabilization at C1–C2. Spine 26(12):1343–1347. doi:10.1097/00007632-200106150-00017

    Article  CAS  PubMed  Google Scholar 

  4. Goffin J, Van Brussel K, Vander Sloten J, Van Audekercke R, Smet MH, Marchal G, Van Craen W, Swaelens B, Verstreken K (1999) 3D-CT based, personalized drill guide for posterior transarticular screw fixation at C1–C2: technical note. Neuro-Orthop 25(1–2):47–56

    Google Scholar 

  5. Hu Y, Yuan ZS, Kepler CK, Albert TJ, Xie H, Yuan JB, Dong WX, Wang CT (2014) Deviation analysis of atlantoaxial pedicle screws assisted by a drill template. Orthopedics 37(5):E420–E427. doi:10.3928/01477447-20140430-51

    Article  PubMed  Google Scholar 

  6. Hu Y, Yuan ZS, Kepler CK, Albert TJ, Yuan JB, Dong WX, Sun XY, Wang CT (2014) Deviation analysis of C1–C2 transarticular screw placement assisted by a novel rapid prototyping drill template: a cadaveric study. J Spinal Disord Tech 27(5):E181–E186

    Article  PubMed  Google Scholar 

  7. Hu Y, Yuan ZS, Spiker WR, Albert TJ, Dong WX, Xie H, Yuan JB, Wang CT (2013) Deviation analysis of C2 translaminar screw placement assisted by a novel rapid prototyping drill template: a cadaveric study. Eur Spine J 22(12):2770–2776. doi:10.1007/s00586-013-2993-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kaneyama S, Sugawara T, Sumi M (2015) Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine 40(6):E341–E348. doi:10.1097/brs.0000000000000772

    Article  PubMed  Google Scholar 

  9. Kaneyama S, Sugawara T, Sumi M, Higashiyama N, Takabatake M, Mizoi K (2014) A novel screw guiding method with a screw guide template system for posterior C-2 fixation. J Neurosurg Spine 21(2):231–238. doi:10.3171/2014.3.spine13730

    Article  PubMed  Google Scholar 

  10. Kawaguchi Y, Nakano M, Yasuda T, Seki S, Hori T, Kimura T (2012) Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide. Spine 37(23):1983–1988. doi:10.1097/BRS.0b013e31825ab547

    Article  PubMed  Google Scholar 

  11. Li XS, Wu ZH, Xia H, Ma XY, Ai FZ, Zhang K, Wang JH, Mai XH, Yin QS (2014) The development and evaluation of individualized templates to assist transoral C2 articular mass or transpedicular screw placement in TARP-IV procedures: adult cadaver specimen study. Clinics 69(11):750–757. doi:10.6061/clinics/2014(11)08

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu S, Xu YQ, Chen GP, Zhang YZ, Lu D, Chen YB, Shi JH, Xu XM (2011) Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. Comput Aided Surg 16(5):240–248. doi:10.3109/10929088.2011.605173

    Article  PubMed  Google Scholar 

  13. Lu S, Xu YQ, Lu WW, Ni GX, Li YB, Shi JH, Li DP, Chen GP, Chen YB, Zhang YZ (2009) A novel patient-specific navigational template for cervical pedicle screw placement. Spine 34(26):E959–E964. doi:10.1097/BRS.0b013e3181c09985

    Article  PubMed  Google Scholar 

  14. Lu S, Xu YQ, Zhang YZ, Xie L, Guo H, Li DP (2009) A novel computer-assisted drill guide template for placement of C2 laminar screws. Eur Spine J 18(9):1379–1385. doi:10.1007/s00586-009-1051-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Owen BD, Christensen GE, Reinhardt JM, Ryken TC (2007) Rapid prototype patient-specific drill template for cervical pedicle screw placement. Comput Aided Surg 12(5):303–308. doi:10.1080/10929080701662826

    Article  PubMed  Google Scholar 

  16. Ryken T, Owen BD, Christensen GE, Reinhardt JM (2009) Image-based drill templates for cervical pedicle screw placement Laboratory investigation. J Neurosurg Spine 10(1):21–26. doi:10.3171/2008.9.spi08229

    Article  PubMed  Google Scholar 

  17. Van Cleynenbreugel J, Schutyser F, Goffin J, Van Brussel K, Suetens P (2002) Image-based planning and validation of C1–C2 transarticular screw fixation using personalized drill guides. Computer Aided Surg 7(1):41–48. doi:10.3109/10929080209146015

    Article  Google Scholar 

  18. D’Urso PS, Williamson OD, Thompson RG (2005) Biomodeling as an aid to spinal instrumentation. Spine 30(24):2841–2845. doi:10.1097/01.brs.0000190886.56895.3d

    Article  PubMed  Google Scholar 

  19. Fraser J, Gebhard H, Irie D, Parikh K, Hartl R (2010) Iso-C/3-dimensional neuronavigation versus conventional fluoroscopy for minimally invasive pedicle screw placement in lumbar fusion. Minim Invasive Neurosurg 53(4):184–190. doi:10.1055/s-0030-1267926

    Article  CAS  PubMed  Google Scholar 

  20. Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13(1):50–59. doi:10.1007/s00586-003-0604-1

    Article  PubMed  Google Scholar 

  21. Steinmann JC, Herkowitz HN, Elkommos H, Wesolowski DP (1993) Spinal pedicle fixation: confirmation of an image-based technique for screw placement. Spine 18(13):1856–1861. doi:10.1097/00007632-199310000-00022

    Article  CAS  PubMed  Google Scholar 

  22. Villavicencio AT, Burneikiene S, Bulsara KR, Thramann JJ (2005) Utility of computerized isocentric fluoroscopy for minimally invasive spinal surgical techniques. J Spinal Disord Tech 18(4):369–375. doi:10.1097/01.bsd.0000168511.67189.64

    Article  PubMed  Google Scholar 

  23. Luther N, Iorgulescu JB, Geannette C, Gebhard H, Saleh T, Tsiouris AJ, Hartl R (2015) Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws: screw accuracy, screw size, and the complexity of surgery. J Spinal Disord Tech 28(5):E298–303. doi:10.1097/BSD.0b013e31828af33e

    Article  PubMed  Google Scholar 

  24. Moses ZB, Mayer RR, Strickland BA, Kretzer RM, Wolinsky JP, Gokaslan ZL, Baaj AA (2013) Neuronavigation in minimally invasive spine surgery. Neurosurg Focus 35(2):E12. doi:10.3171/2013.5.focus13150

    Article  PubMed  Google Scholar 

  25. Patton AG, Morris RP, Kuo YF, Lindsey RW (2015) Accuracy of fluoroscopy versus computer-assisted navigation for the placement of anterior cervical pedicle screws. Spine 40(7):E404–E410. doi:10.1097/brs.0000000000000786

    Article  PubMed  Google Scholar 

  26. Singh PK, Garg K, Sawarkar D, Agarwal D, Satyarthee GD, Gupta D, Sinha S, Kale SS, Sharma BS (2014) Computed tomography-guided C2 pedicle screw placement for treatment of unstable hangman fractures. Spine 39(18):E1058–E1065. doi:10.1097/brs.0000000000000451

    Article  PubMed  Google Scholar 

  27. Hartl R, Lam KS, Wang J, Korge A, Kandziora F, Audige L (2013) Worldwide survey on the use of navigation in spine surgery. World Neurosurg 79(1):162–172. doi:10.1016/j.wneu.2012.03.011

    Article  PubMed  Google Scholar 

  28. Shimizu M, Takahashi J, Ikegami S, Kuraishi S, Futatsugi T, Kato H (2014) Are pedicle screw perforation rates influenced by registered or unregistered vertebrae in multilevel registration using a CT-based navigation system in the setting of scoliosis? Eur Spine J 23(10):2211–2217. doi:10.1007/s00586-014-3512-7

    Article  PubMed  Google Scholar 

  29. Wang MY (2013) Navigation for spinal surgery: why hasn’t it become the accepted standard? World Neurosurg 79(1):87–87. doi:10.1016/j.wneu.2012.10.036

    Article  CAS  PubMed  Google Scholar 

  30. Ishikawa Y, Kanemura T, Yoshida G, Matsumoto A, Ito Z, Tauchi R, Muramoto A, Ohno S, Nishimura Y (2011) Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine 15(5):472–478. doi:10.3171/2011.6.spine10809

    Article  PubMed  Google Scholar 

  31. Miyamoto H, Uno K (2009) Cervical pedicle screw insertion using a computed tomography cutout technique: Technical note. J Neurosurg Spine 11(6):681–687. doi:10.3171/2009.6.spine09352

    Article  PubMed  Google Scholar 

  32. Wolfla CE (2006) Anatomical, biomechanical, and practical considerations in posterior occipitocervical instrumentation. Spine J 6(6 Suppl):225S–232S. doi:10.1016/j.spinee.2006.09.001

    Article  PubMed  Google Scholar 

  33. Shin MH, Hur JW, Ryu KS, Park CK (2015) Prospective comparison study between the fluoroscopy-guided and navigation coupled with O-arm-guided pedicle screw placement in the thoracic and lumbosacral spines. J Spinal Disord Tech 28(6):E347–E351. doi:10.1097/BSD.0b013e31829047a7

    Article  PubMed  Google Scholar 

  34. Grelat M, Zairi F, Quidet M, Marinho P, Allaoui M, Assaker R (2015) Assessment of the surgeon radiation exposure during a minimally invasive TLIF: comparison between fluoroscopy and O-arm system. Neurochirurgie 61(4):255–259. doi:10.1016/j.neuchi.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  35. Dickman CA, Sonntag VKH (1998) Posterior C1–C2 transarticular screw fixation for atlantoaxial arthrodesis. Neurosurgery 43(2):275–280. doi:10.1097/00006123-199808000-00056

    Article  CAS  PubMed  Google Scholar 

  36. Gluf WM, Schmidt MH, Apfelbaum RI (2005) Atlantoaxial transarticular screw fixation: a review of surgical indications, fusion rate, complications, and lessons learned in 191 adult patients. J Neurosurg Spine 2(2):155–163. doi:10.3171/spi.2005.2.2.0155

    Article  PubMed  Google Scholar 

  37. Haid RW, Subach BR, McLaughlin MR, Rodts GE, Wahlig JB (2001) C1–C2 transarticular screw fixation for atlantoaxial instability: a 6-year experience. Neurosurgery 49(1):65–68. doi:10.1097/00006123-200107000-00010

    PubMed  Google Scholar 

  38. Lapsiwala SB, Anderson PA, Oza A, Resnick DK (2006) Biomechanical comparison of four C1 to C2 rigid fixative techniques: anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws. Neurosurgery 58(3):516–520. doi:10.1227/01.neu.0000197222.05299.31

    Article  PubMed  Google Scholar 

  39. Sim HB, Lee JW, Park JT, Mindea SA, Lim J, Park J (2011) Biomechanical evaluations of various C1–C2 posterior fixation techniques. Spine 36(6):E401–E407. doi:10.1097/BRS.0b013e31820611ba

    Article  PubMed  Google Scholar 

  40. Uehara M, Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Mukaiyama K, Kato H (2012) Computer-assisted C1–C2 transarticular screw fixation “Magerl technique” for atlantoaxial instability. Asian Spine J 6(3):168–177. doi:10.4184/asj.2012.6.3.168

    Article  PubMed  PubMed Central  Google Scholar 

  41. Duan SY, He HW, Lv SM, Chen LB (2010) Three-dimensional CT study on the anatomy of vertebral artery at atlantoaxial and intracranial segment. Surg Radiol Anat 32(1):39–44. doi:10.1007/s00276-009-0552-5

    Article  PubMed  Google Scholar 

  42. Paramore CG, Dickman CA, Sonntag VKH (1996) The anatomical suitability of the C1–2 complex for transarticular screw fixation. J Neurosurg 85(2):221–224. doi:10.3171/jns.1996.85.2.0221

    Article  CAS  PubMed  Google Scholar 

  43. Ebraheim NA, Xu RM, Knight T, Yeasting RA (1997) Morphometric evaluation of lower cervical pedicle and its projection. Spine 22(1):1–5. doi:10.1097/00007632-199701010-00001

    Article  CAS  PubMed  Google Scholar 

  44. Xu RM, Nadaud MC, Ebraheim NA, Yeasting RA (1995) Morphology of the 2nd cervical vertebra and the posterior projection of the C2 pedicle axis. Spine 20(3):259–263. doi:10.1097/00007632-199502000-00001

    Article  CAS  PubMed  Google Scholar 

  45. Igarashi T, Kikuchi S, Sato K, Kayama S, Otani K (2003) Anatomic study of the axis for surgical planning of transarticular screw fixation. Clin Orthop Relat Res 408:162–166. doi:10.1097/01.blo.0000048136.30533.4f

    Article  Google Scholar 

  46. Madawi AA, Casey ATH, Solanki GA, Tuite G, Veres R, Crockard HA (1997) Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg 86(6):961–968. doi:10.3171/jns.1997.86.6.0961

    Article  CAS  PubMed  Google Scholar 

  47. Mandel IM, Kambach BJ, Petersilge CA, Johnstone B, Yoo JU (2000) Morphologic considerations of C2 isthmus dimensions for the placement of transarticular screws. Spine 25(12):1542–1547. doi:10.1097/00007632-200006150-00014

    Article  CAS  PubMed  Google Scholar 

  48. Bransford RJ, Russo AJ, Freeborn M, Nguyen QT, Lee MJ, Chapman JR, Bellabarba C (2011) Posterior C2 instrumentation accuracy and complications associated with four techniques. Spine 36(14):E936–E943. doi:10.1097/BRS.0b013e3181fdaf06

  49. Yang YL, Zhou DS, He JL (2013) Comparison of isocentric C-arm 3-dimensional navigation and conventional fluoroscopy for C1 lateral mass and C2 pedicle screw placement for atlantoaxial instability. J Spinal Disord Tech 26(3):127–134. doi:10.1097/BSD.0b013e31823d36b6

    Article  PubMed  Google Scholar 

  50. Yoshihara H, Passias PG, Errico TJ (2013) Screw-related complications in the subaxial cervical spine with the use of lateral mass versus cervical pedicle screws. J Neurosurg Spine 19(5):614–623. doi:10.3171/2013.8.spine13136

    Article  PubMed  Google Scholar 

  51. Cassinelli EH, Lee M, Skalak A, Ahn NU, Wright NM (2006) Anatomic considerations for the placement of C2 laminar screws. Spine 31(24):2767–2771. doi:10.1097/01.brs.0000245869.85276.f4

    Article  PubMed  Google Scholar 

  52. Wang MY (2007) Cervical crossing laminar screws: early clinical results and complications. Neurosurgery 61(5):311–315. doi:10.1227/01.neu.0000303987.49870.7b

    PubMed  Google Scholar 

  53. Jea A, Sheth RN, Vanni S, Green BA, Levi AD (2008) Modification of Wright’s technique for placement of bilateral crossing C2 translaminar screws: technical note. Spine Journal 8(4):656–660. doi:10.1016/j.spinee.2007.06.008

    Article  PubMed  Google Scholar 

  54. Leonard JR, Wright NM (2006) Pediatric atlantoaxial fixation with bilateral, crossing C-2 translaminar screws—Technical note. J Neurosurg 104(1):59–63. doi:10.3171/ped.2006.104.1.59

    PubMed  Google Scholar 

  55. Wright NM (2004) Posterior C2 fixation using bilateral, crossing C2 laminar screws—Case series and technical note. J Spinal Disord Tech 17(2):158–162. doi:10.1097/00024720-200404000-00014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijing He.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Human and animal rights

In the current study, all procedures performed involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from the individual participant included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Liu, C., Dong, J. et al. Cervical screw placement using rapid prototyping drill templates for navigation: a literature review. Int J CARS 11, 2231–2240 (2016). https://doi.org/10.1007/s11548-016-1414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1414-3

Keywords

Navigation