Skip to main content

User-friendly freehand ultrasound calibration using Lego bricks and automatic registration

Abstract

Purpose

As an inexpensive, noninvasive, and portable clinical imaging modality, ultrasound (US) has been widely employed in many interventional procedures for monitoring potential tissue deformation, surgical tool placement, and locating surgical targets. The application requires the spatial mapping between 2D US images and 3D coordinates of the patient. Although positions of the devices (i.e., ultrasound transducer) and the patient can be easily recorded by a motion tracking system, the spatial relationship between the US image and the tracker attached to the US transducer needs to be estimated through an US calibration procedure. Previously, various calibration techniques have been proposed, where a spatial transformation is computed to match the coordinates of corresponding features in a physical phantom and those seen in the US scans. However, most of these methods are difficult to use for novel users.

Methods

We proposed an ultrasound calibration method by constructing a phantom from simple Lego bricks and applying an automated multi-slice 2D–3D registration scheme without volumetric reconstruction. The method was validated for its calibration accuracy and reproducibility.

Results

Our method yields a calibration accuracy of \(1.23\pm 0.26\) mm and a calibration reproducibility of 1.29 mm.

Conclusion

We have proposed a robust, inexpensive, and easy-to-use ultrasound calibration method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Machi J, Oishi AJ, Furumoto NL, Oishi RH (2004) Intraoperative ultrasound. Surg Clin N Am 84:1085–1111

    Article  PubMed  Google Scholar 

  2. Boctor E, deOliveira M, Choti M, Ghanem R, Taylor R, Hager G, Fichtinger G (2006) Ultrasound monitoring of tissue ablation via deformation model and shape priors. Med Image Comput Comput Assist Interv 9:405–412

    PubMed  Google Scholar 

  3. Hammoud MA, Ligon BL, ElSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84:737–741

    CAS  Article  PubMed  Google Scholar 

  4. Charboneau JW, Reading CC, Welch TJ (1990) Ct and sonographically guided needle-biopsy—current techniques and new innovations. Am J Roentgenol 154:1–10

    CAS  Article  Google Scholar 

  5. Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27:787–800

    CAS  Article  PubMed  Google Scholar 

  6. Keles GE, Lamborn KR, Berger MS (2003) Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery 53:556–562

    Article  PubMed  Google Scholar 

  7. Mercier L, Lango T, Lindseth F, Collins DL (2005) A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol 31:449–471

    Article  PubMed  Google Scholar 

  8. Detmer PR, Bashein G, Hodges T, Beach KW, Filer EP, Burns DH, Jr DE (1994) Strandness, 3D ultrasonic image feature localization based on magnetic scanhead tracking—in-vitro calibration and validation. Ultrasound Med Biol 20:923–936

    CAS  Article  PubMed  Google Scholar 

  9. Trobaugh JW, Trobaugh DJ, Richard WD (1994) Three-dimensional imaging with stereotactic ultrasonography. Comput Med Imaging Gr 18:315–323

    CAS  Article  Google Scholar 

  10. Prager RW, Rohling RN, Gee AH, Berman L (1998) Rapid calibration for 3D freehand ultrasound. Ultrasound Med Biol 24:855–869

    CAS  Article  PubMed  Google Scholar 

  11. Najafi M, Afsham N, Abolmaesumi P, Rohling R (2015) A closed-form differential formulation for ultrasound spatial calibration: single wall phantom. Ultrasound Med Biol 41:1079–1094

    Article  PubMed  Google Scholar 

  12. Najafi M, Afsham N, Abolmaesumi P, Rohling R (2014) A closed-form differential formulation for ultrasound spatial calibration: multi-wedge phantom. Ultrasound Med Biol 40:2231–2243

    Article  PubMed  Google Scholar 

  13. Brown RA (1979) Stereotactic head frame for use with Ct body scanners. Investig Radiol 14:401–401

    Article  Google Scholar 

  14. Comeau RM, Fenster A, Peters TM, (1998) Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. In: Proceedings of SPIE, The International Society for Optical Engineering, pp 747–754

  15. Lindseth F, Tangen GA, Lango T, Bang J (2003) Probe calibration for freehand 3D ultrasound. Ultrasound Med Biol 29:1607–1623

    Article  PubMed  Google Scholar 

  16. Pagoulatos N, Haynor DR, Kim Y (2001) A fast calibration method for 3D tracking of ultrasound images using a spatial localizer. Ultrasound Med Biol 27:1219–1229

    CAS  Article  PubMed  Google Scholar 

  17. Boctor E, Viswanathan A, Choti M, Taylor RH, Fichtinger G, Hager G (2004) A novel closed form solution for ultrasound calibration. In: 2nd IEEE international symposium on biomedical imaging: macro to nano, Vols 1 and 2. pp 527–530, 2004

  18. Chen TK, Thurston AD, Ellis RE, Abolmaesumi P (2009) A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med Biol 35:79–93

    Article  PubMed  Google Scholar 

  19. Hsu PW, Prager RW, Gee AH, Treece GM (2008) Real-time freehand 3D ultrasound calibration. Ultrasound Med Biol 34:239–251

    Article  PubMed  Google Scholar 

  20. Hsu PW, Treece GM, Prager RW, Houghton NE, Gee AH (2008) Comparison of freehand 3D ultrasound calibration techniques using a stylus. Ultrasound Med Biol 34:1610–1621

    Article  PubMed  Google Scholar 

  21. Melvaer EL, Morken K, Samset E (2012) A motion constrained cross-wire phantom for tracked 2D ultrasound calibration. Int J Comput Assist Radiol Surg 7:611–620

    Article  PubMed  Google Scholar 

  22. Barratt DC, Penney GP, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imaging 25:312–323

    Article  PubMed  Google Scholar 

  23. Blackall JM, Rueckert D, Maurer CR, Penney GP, Hill DLG, Hawkes DJ (2000) An image registration approach to automated calibration for freehand 3D ultrasound. Med Image Comput Comput-Assist Interv—Miccai 1935:462–471

    Google Scholar 

  24. Mercier L, Del Maestro RF, Petrecca K, Kochanowska A, Drouin S, Yan CX, Janke AL, Chen SJ, Collins DL (2011) New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 6:507–522

    Article  PubMed  Google Scholar 

  25. Poon TC, Rohling RN (2005) Comparison of calibration methods for spatial tracking of a 3D ultrasound probe. Ultrasound Med Biol 31:1095–1108

    Article  PubMed  Google Scholar 

  26. Caramanos Z, Fonov VS, Francis SJ, Narayanan S, Pike GB, Collins DL, Arnold DL (2010) Gradient distortions in MRI: characterizing and correcting for their effects on SIENA-generated measures of brain volume change. Neuroimage 49:1601–1611

    Article  PubMed  Google Scholar 

  27. Soehl M, Walsh R, Rankin A, Lasso A, Fichtinger G (2014) Tracked ultrasound calibration studies with a phantom made of LEGO bricks. Med Imaging, Image-Guided Proced, Robot Interv, Modeling 9036:2014

    Google Scholar 

  28. Yan CXB, Goulet B, Tampieri D, Collins DL (2012) Ultrasound-CT registration of vertebrae without reconstruction. Int J Comput Assist Radiol Surg 7:901–909

    Article  PubMed  Google Scholar 

  29. Cleary K, Anderson J, Brazaitis M, Devey G, DiGioia A, Freedman M, Gronemeyer D, Lathan C, Lemke H, Long D, Mun SK, Taylor R (2000) Final report of the technical requirements for image-guided spine procedures workshop, April 17–20, 1999, Ellicott City, MA, USA. Comput Aided Surg 5:180–215

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Xiao.

Ethics declarations

Conflict of interest

Yiming Xiao, Charles Xiao Bo Yan, Simon Drouin, Dante De Nigris, Anna Kochanowska, and D. Louis Collins declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Yan, C.X.B., Drouin, S. et al. User-friendly freehand ultrasound calibration using Lego bricks and automatic registration. Int J CARS 11, 1703–1711 (2016). https://doi.org/10.1007/s11548-016-1368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1368-5

Keywords

  • Ultrasound
  • Calibration
  • Phantom
  • Image registration
  • Lego
  • 2D–3D