Advertisement

Experimental investigation of intravascular OCT for imaging of intracranial aneurysms

  • Thomas HoffmannEmail author
  • Sylvia Glaßer
  • Axel Boese
  • Knut Brandstädter
  • Thomas Kalinski
  • Oliver Beuing
  • Martin Skalej
Original Article

Abstract

Purpose

Rupture risk assessment of an intracranial aneurysm (IA) is an important factor for indication of therapy. Until today, there is no suitable objective prediction method. Conventional imaging modalities cannot assess the IA’s vessel wall. We investigated the ability of intravascular optical coherence tomography (OCT) as a new tool for the characterization and evaluation of IAs.

Materials and methods

An experimental setup for acquisition of geometrical aneurysm parameters was developed. Object of basic investigation was a silicone phantom with six IAs from patient data. For structural information, three circle of Willis were dissected and imaged postmortem. All image data were postprocessed by medical imaging software.

Results

Geometrical image data of a phantom with six different IAs were acquired. The geometrical image data showed a signal loss, e.g., in aneurysms with a high bottleneck ratio. Imaging data of vessel specimens were evaluated with respect to structural information that is valuable for the characterization of IAs. Those included thin structures (intimal flaps), changes of the vessel wall morphology (intimal thickening, layers), adjacent vessels, small vessel outlets, arterial branches and histological information.

Conclusion

Intravascular OCT provides new possibilities for diagnosis and rupture assessment of IAs. However, currently used imaging system parameters have to be adapted and new catheter techniques have to be developed for a complete assessment of the morphology of IAs.

Keywords

Intracranial aneurysm wall Optical coherence tomography (OCT) Rupture risk Intracranial arterial wall 

Notes

Acknowledgments

This work was partly funded by the Federal Ministry of Education and Research (BMBF) and Saxony-Anhalt within the Forschungscampus STIMULATE (13GW0095A; I60).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest in this study.

References

  1. 1.
    Forsting M, Wanke I (2008) Intracranial vascular malformations and aneurysms. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Keedy A (2006) An overview of intracranial aneurysms. McGill J Med 9(2):141PubMedCentralPubMedGoogle Scholar
  3. 3.
    Mueller OM, Schlamann M, Mueller D, Sandalcioglu IE, Forsting M, Sure U (2011) Intracranial aneurysms: optimized diagnostic tools call for thorough interdisciplinary treatment strategies. Therapeutic advances in neurological disorders, pp. 1756285611415309Google Scholar
  4. 4.
    Vernooij MW, Ikram MA, Tanghe HL, Vincent Arnaud JPE, Hofman A, Krestin GP, Niessen WJ, Breteler Monique MB, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828CrossRefPubMedGoogle Scholar
  5. 5.
    Wiebers DO (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110CrossRefPubMedGoogle Scholar
  6. 6.
    Tearney GJ, Jang I-K, Bouma BE (2006) Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 11(2):021002-021002-10CrossRefGoogle Scholar
  7. 7.
    Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang I-K, Akasaka T, Costa M, Guagliumi G, Grube E (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415CrossRefPubMedGoogle Scholar
  8. 8.
    Murata A, Wallace-Bradley D, Tellez A, Alviar C, Aboodi M, Sheehy A, Coleman L, Perkins L, Nakazawa G, Mintz G (2010) Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. JACC Cardiovasc Imaging 3(1):76–84CrossRefPubMedGoogle Scholar
  9. 9.
    Kang S-J, Mintz GS, Akasaka T, Park D-W, Lee J-Y, Kim W-J, Lee S-W, Kim Y-H, Lee CW, Park S-W (2011) Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation 123(25):2954–2963CrossRefPubMedGoogle Scholar
  10. 10.
    Farooq MU, Khasnis A, Majid A, Kassab MY (2009) The role of optical coherence tomography in vascular medicine. Vasc Med 14(1):63–71CrossRefPubMedGoogle Scholar
  11. 11.
    Standish BA, Spears J, Marotta TR, Montanera W, Yang VX (2012) Vascular wall Imaging of vulnerable atherosclerotic carotid plaques: current state of the art and potential future of endovascular optical coherence tomography. Am J Neuroradiol 33(9):1642–1650CrossRefPubMedGoogle Scholar
  12. 12.
    Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1):9–25PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemelä M, Hernesniemi J (2012) Saccular intracranial aneurysm: pathology and mechanisms, (eng). Acta Neuropathol 123(6):773–786CrossRefPubMedGoogle Scholar
  15. 15.
    Thorell WE, Chow MM, Prayson RA, Shure MA, Jeon SW, Huang D, Zeynalov E, Woo HH, Rasmussen PA, Rollins AM (2005) Optical coherence tomography: a new method to assess aneurysm healing. J Neurosurg 102(2):348PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Mathews MS, Su J, Heidari E, Levy EI, Linskey ME, Chen Z (2011) Neuroendovascular optical coherence tomography imaging and histological analysis. Neurosurgery 69(2):430PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Mathews MS, Su J, Heidari E, Linskey ME, Chen Z (eds) (2011) Neuro-endovascular optical coherence tomography imaging: clinical feasibility and applications. SPIE BiOS. International Society for Optics and Photonics, pp 788341-1–788341-7Google Scholar
  18. 18.
    Lopes DK, Johnson AK (2011) Evaluation of cerebral artery perforators and the pipeline embolization device using optical coherence tomography. J Neurointerv Surg neurintsurg-2011-010102Google Scholar
  19. 19.
    van der Marel K, Gounis M, King R, Wakhloo A, Puri A (2014) P-001 high-resolution optical and angiographic CT imaging of flow-diverter stents for assessment of vessel wall apposition, (eng). J Neurointerv Surg 6(Suppl 1):A21CrossRefGoogle Scholar
  20. 20.
    Costalat V, Sanchez M, Ambard D, Thines L, Lonjon N, Nicoud F, Brunel H, Lejeune JP, Dufour H, Bouillot P (2011) Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J Biomech 44(15):2685–2691CrossRefPubMedGoogle Scholar
  21. 21.
    Sun C, Standish B, Yang VXD (2011) Optical coherence elastography: current status and future applications. J Biomed Opt 16(4):043001-043001-12CrossRefGoogle Scholar
  22. 22.
    Lall RR, Eddleman CS, Bendok BR, Batjer HH (2009) Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg Focus 26(5):E2CrossRefPubMedGoogle Scholar
  23. 23.
    Kleinloog R, Korkmaz E, Zwanenburg JJ, Kuijf HJ, Visser F, Blankena R, Post JA, Ruigrok YM, Luijten PR, Regli L, Rinkel GJ, Verweij BH (2014) Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study. Neurosurgery 75(6):614–622CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2015

Authors and Affiliations

  • Thomas Hoffmann
    • 1
    Email author
  • Sylvia Glaßer
    • 2
  • Axel Boese
    • 3
  • Knut Brandstädter
    • 4
  • Thomas Kalinski
    • 5
  • Oliver Beuing
    • 1
  • Martin Skalej
    • 1
  1. 1.Institute of NeuroradiologyOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of Simulation and GraphicsOtto-von-Guericke UniversityMagdeburgGermany
  3. 3.Department of Medical EngineeringOtto-von-Guericke UniversityMagdeburgGermany
  4. 4.Institute of Forensic MedicineOtto-von-Guericke UniversityMagdeburgGermany
  5. 5.Institute of PathologyOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations