Advertisement

Objective measurements of image quality in synchrotron radiation phase-contrast imaging versus digital mammography

  • Y. Ruiz-GonzalezEmail author
  • M. Perez-Diaz
  • D. Martínez-Aguila
  • M. Diaz-Barreto
  • I. Fleitas
  • R. Mora-Machado
  • L. Rigon
  • G. Tromba
  • P. Bregant
Original Article

Abstract

Purpose

Phase-contrast mammography with synchrotron radiation is an innovative X-ray imaging practice that improves the identification of breast lesions. Previous studies have proven the superiority of the mammography images taken in the phase-contrast modality using synchrotron radiation beams as compared with images taken in conventional mammography by subjective analyses. However, to our knowledge, no previous study has compared different acquisition systems in order to quantify this improvement by means of objective robust indicators. In this research, we intend to quantify the superiority of phase-contrast imaging by means of objective metrics of image quality.

Methods

Images from the American College of Radiology Mammographic Accreditation Phantom were obtained at hospitals, in two digital mammography equipment and at the Elettra synchrotron radiation facility (Trieste, Italy), using free space propagation phase-contrast modality. Regions of interest were selected to analyze image quality at the fibers (phase object) and masses (area object) simulated on the phantom by means of the signal-to-noise ratio, the figure of merit, the contrast and the edge visibility.

Results

The image contrast and edge visibility were significantly higher at the phase-contrast modality as compared with digital mammography equipment. The figure of merit using phase-contrast modality was higher for the fibers and comparable for the masses.

Conclusion

The results showed an improvement of the contrast and edge visibility in phase-contrast images. These improvements may be important in the detection of small lesions and details.

Keywords

Mammography Phase contrast Synchrotron radiation Image quality 

Notes

Acknowledgments

The author would like to thanks to ICTP for supporting this research, and Synchrotron ELETTRA and Trieste hospitals for contributing with data collection.

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    Pisano ED, Yaffe Mj (2014) Breast cancer screening: Should tomosynthesis replace digital mammography? JAMA 311(24):2488–2489CrossRefPubMedGoogle Scholar
  2. 2.
    Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, Jong R, Rebner M (2005) Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353(17):1773–1783CrossRefPubMedGoogle Scholar
  3. 3.
    Dance DR (1988) Diagnostic radiology with X-rays. Adam Hilger, United KingdomGoogle Scholar
  4. 4.
    Friedewald SM, Rafferty EA, Rose SL (2014) Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 311(24):2499–2507CrossRefPubMedGoogle Scholar
  5. 5.
    Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan ALC, Miller DF (2008) Dedicated breast CT: initial clinical experience. Radiology 246(3):725–733PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–R35CrossRefPubMedGoogle Scholar
  7. 7.
    Lewis RA (2004) Medical phase contrast X-ray imaging: current status and future prospects. Phys Med Biol 49(16):3573–3583CrossRefPubMedGoogle Scholar
  8. 8.
    Rigon L (2014) 2.08—X-ray imaging with coherent sources. In: Brahme Anders (ed) Comprehensive biomedical physics. Elsevier, Oxford, pp 193–220CrossRefGoogle Scholar
  9. 9.
    Honda C, Ohara H (2008) Advantages of magnification in digital phase-contrast mammography using a practical X-ray tube. Eur J Radiol 68(3):69–72CrossRefGoogle Scholar
  10. 10.
    Olivo A, Gkoumas S, Endrizzi M, Hagen CK, Szafraniec MB, Diemoz PC, Munro PRT, Ignatyev K, Johnson B, Horrocks JA, Vinnicombe SJ, Jones JL, Speller RD (2013) Low-dose phase contrast mammography with conventional X-ray sources. Med Phys 40(9):090701CrossRefPubMedGoogle Scholar
  11. 11.
    Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk RH, Rokvic T, Vascotto A, Tromba G, Cova MA (2011) Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259(3):684–694CrossRefPubMedGoogle Scholar
  12. 12.
    Arfelli F, Bonvicini V, Bravin A, Cantatore G, Castelli E, Dalla Palma L, Di Michiel M, Fabrizioli M, Longo R, Menk RH, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Ratti M, Rigon L, Tromba G, Vacchi A, Vallazza E, Zanconati F (2000) Mammography with synchrotron radiation: phase-detection techniques1. Radiology 215(1):286–293CrossRefPubMedGoogle Scholar
  13. 13.
    Lider VV, Kovalchuk MV (2013) X-ray phase-contrast methods. Crystallogr Rep 58(6):769–787CrossRefGoogle Scholar
  14. 14.
    Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486CrossRefGoogle Scholar
  15. 15.
    Arfelli F, Assante M, Bonvicini V, Bravin A, Cantatore G, Castelli E, Palma LD, Michiel MD, Longo R, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Tromba G, Vacchi A, Vallazza E, Zanconati F (1998) Low-dose phase contrast X-ray medical imaging. Phys Med Biol 43(10):2845CrossRefPubMedGoogle Scholar
  16. 16.
    Burattini E, Gambaccini M, Marziani M, Rimondi O, Indovina PL, Pocek M, Simonetti G, Benassi M, Tirelli C, Passariello R (1992) X-ray mammography with synchrotron radiation. Rev Sci Instrum 63(1):638–640CrossRefGoogle Scholar
  17. 17.
    Moeckli R, Verdun F, Fiedler S, Pachoud M, Schnyder P, Valley J (2000) Objective comparison of image quality and dose between conventional and synchrotron radiation mammography. Phys Med Biol 45(12):3509–3523CrossRefPubMedGoogle Scholar
  18. 18.
    Ghani MU, Wu D, Li Y, Kang M, Chen WR, Wu X, Liu H (2013) Quantitative analysis of contrast to noise ratio using a phase contrast X-ray imaging prototype. Presented at the Biophotonics and Immune Responses VIII 8582, pp 85820H–85820H-6Google Scholar
  19. 19.
    Borg M, Badr I, Royle GJ (2012) The use of a figure-of-merit (FOM) for optimization in digital mammography: a literature review. Radiat Prot Dosim 151(1):81–88CrossRefGoogle Scholar
  20. 20.
    Diemoz PC, Bravin A, Langer M, Coan P (2012) Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques. Opt Express 20(25):27670CrossRefPubMedGoogle Scholar
  21. 21.
    Pagot E, Fiedler S, Cloetens P, Bravin A, Coan P, Fezzaa K, Baruchel J, Härtwig J (2005) Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Phys Med Biol 50(4):709CrossRefPubMedGoogle Scholar
  22. 22.
    Dreossi D, Abrami A, Arfelli F, Bregant P, Casarin K, Chenda V, Cova MA, Longo R, Menk R-H, Quai E, Quaia E, Rigon L, Rokvic T, Sanabor D, Tonutti M, Tromba G, Vascotto A, Zanconati F, Castelli E (2008) The mammography project at the SYRMEP beamline. Eur J Radiol 68(3):S58–S62CrossRefPubMedGoogle Scholar
  23. 23.
    Castelli E, Arfelli F, Dreossi D, Longo R, Rokvic T, Cova MA, Quaia E, Tonutti M, Zanconati F, Abrami A, Chenda V, Menk RH, Quai E, Tromba G, Bregant P, de Guarrini F (2007) Clinical mammography at the SYRMEP beam line. Nucl Instrum Methods Phys Res Sect A 572(1):237–240CrossRefGoogle Scholar
  24. 24.
    Ingal VN, Beliaevskaya EA (1995) X-ray plane-wave topography observation of the phase contrast from a non-crystalline object. J Phys D Appl Phys 28(11):2314CrossRefGoogle Scholar
  25. 25.
    Gureyev TE, Wilkins SW (1997) Regimes of X-ray phase-contrast imaging with perfect crystals. Nouv Cim D 19(2–4):545–552CrossRefGoogle Scholar
  26. 26.
    Born M, Wolf E (1999) Principles of optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© CARS 2015

Authors and Affiliations

  • Y. Ruiz-Gonzalez
    • 1
    Email author
  • M. Perez-Diaz
    • 1
  • D. Martínez-Aguila
    • 1
  • M. Diaz-Barreto
    • 2
  • I. Fleitas
    • 2
  • R. Mora-Machado
    • 2
  • L. Rigon
    • 3
  • G. Tromba
    • 4
  • P. Bregant
    • 5
  1. 1.Center for Studies on Electronics and Information TechnologiesCentral University of Las VillasVilla ClaraCuba
  2. 2.Centro para el Control Estatal de MedicamentosEquipos y Dispositivos MédicosHabanaCuba
  3. 3.Department of PhysicsUniversity of Trieste and INFNTriesteItaly
  4. 4.ELETTRA, Sincrotrone Trieste SCpATriesteItaly
  5. 5.Health PhysicsAzienda Ospedaliero Universitaria “Ospedali Riuniti”TriesteItaly

Personalised recommendations