Skip to main content

Advertisement

Log in

BIPCO: ultrasound feature points based on phase congruency detector and binary pattern descriptor

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Detection of feature points in medical ultrasound (US) images is the starting point of many clinical tasks, such as segmentation of lesions in pathological areas, estimation of organ deformation, and multimodality image fusion. However, obtaining a reliable feature point localization is a complex task even for an expert radiologist due to the US image characteristics: strong presence of noise, insidious artifacts, and low contrast. In this work, we describe a feature detector based on phase congruency (PhC) combined with a binary pattern descriptor.

Methods

We introduce a feature detector specifically designed for US images and based on PhC analysis. We also introduce a descriptor based on local binary pattern (LBP) operator to improve and simplify the matching between feature points extracted from different images. LBP is not applied directly to the intensity values; instead, it is applied to the PhC output obtained during the detection step to improve robustness to intensity transformation, and the rejection of noise.

Results

We tested the proposed approach compared to state-of- the-art methods applied to real US images subject to realistic synthetic transformations. The results of the proposed method, in terms of accuracy and precision, outperform the state-of-the-art approaches that are not designed for US data.

Conclusions

The methods described in this work will enable the development of US-based navigation system, which supports automatic feature point detection and matching from US images acquired at different times during the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In: European conference on computer vision (ECCV)

  2. Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision ECCV 2006, no. 3951 in lecture notes in computer science. Springer, Berlin, pp 404–417

  3. Brown M, Hua G, Winder S (2011) Discriminative learning of local image descriptors. IEEE Trans Pattern Anal Mach Intell 33(1): 43–57

    Article  PubMed  Google Scholar 

  4. Calonder M, Lepetit V, Ozuysal M, Trzcinski T, Strecha C, Fua P (2012) Brief: computing a local binary descriptor very fast. IEEE Trans Pattern Anal Mach Intell 34(7):1281–1298. doi:10.1109/TPAMI.2011.222

    Article  Google Scholar 

  5. Curry RA, Tempkin BB (2011) Sonography: introduction to normal structure and function. Elsevier/Saunders, St Louis, Mo

    Google Scholar 

  6. Fan B, Wu F, Hu Z (2012) Rotationally invariant descriptors using intensity order pooling. IEEE Trans Pattern Anal Mach Intell 34(10):2031–2045

    Article  PubMed  Google Scholar 

  7. Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144

    Article  Google Scholar 

  8. Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379–2394

    Article  CAS  PubMed  Google Scholar 

  9. Gee A (2004) Processing and visualizing three-dimensional ultrasound data. Br J Radiol 77(suppl\_2):S186–S193

    Article  PubMed  Google Scholar 

  10. Hacihaliloglu I, Abugharbieh R, Hodgson A, Rohling R (2008) Bone segmentation and fracture detection in ultrasound using 3D local phase features. In: Medical image computing and computer-assisted intervention MICCAI 2008, 5241, pp 287–295

  11. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2011) Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound. Ultrasound Med Biol 37(10):1689–1703

    PubMed  Google Scholar 

  12. Heikkil M, Pietikinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436

    Article  Google Scholar 

  13. Kovesi P (2002) Edges are not just steps. In: Proceedings of the fifth Asian conference on computer vision (January), pp 23–25

  14. Kovesi P (2003) Phase congruency detects corners and edges. In: The Australian Pattern Recognition Society Conference: DICTA 2003, pp 309–318

  15. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278. doi:10.1109/TPAMI.2005.151

    Article  PubMed  Google Scholar 

  16. Leutenegger S, Chli M, Siegwart R (2011) BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE international conference on computer vision (ICCV), pp 2548–2555

  17. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  18. Miele FR (2006) Ultrasound physics and instrumentation. Miele Enterprises, Forney, TX

    Google Scholar 

  19. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  PubMed  Google Scholar 

  20. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72

    Article  Google Scholar 

  21. Miksik O, Mikolajczyk K (2012) Evaluation of local detectors and descriptors for fast feature matching. In: 2012 21st international conference on pattern recognition (ICPR), pp 2681–2684

  22. Myronenko A, Song X (2010) Point set registration: Coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  PubMed  Google Scholar 

  23. Nanni L, Lumini A, Brahnam S (2012) Survey on LBP based texture descriptors for image classification. Expert Syst Appl 39(3):3634–3641

    Article  Google Scholar 

  24. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  25. Ojala T, Pietikinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  26. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision ECCV 2006, no. 3951 in lecture notes in computer science, Springer, Berlin, pp 430–443

  27. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE international conference on computer vision (ICCV), pp 2564–2571

  28. Szilagyi T, Brady M. (2009). Feature extraction from cancer images using local phase congruency: a reliable source of image descriptors. In: IEEE international symposium on biomedical imaging: from Nano to Macro, 2009. ISBI ’09, pp 1219–1222

  29. Tola E, Lepetit V, Fua P (2008) A fast local descriptor for dense matching. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008, pp 1–8

  30. Tola E, Lepetit V, Fua P (2010) DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830

    Article  PubMed  Google Scholar 

  31. Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213(2):317–320

    Article  CAS  PubMed  Google Scholar 

  32. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280

    Article  Google Scholar 

  33. Vandergheynst P, Ortiz R, Alahi A (2012) FREAK: fast retina keypoint. In: 2013 IEEE conference on computer vision and pattern recognition, vol. 0. IEEE Computer Society, Los Alamitos, CA, USA, pp 510–517

  34. Wong A, Bishop W (2008) Efficient least squares fusion of MRI and CT images using a phase congruency model. Pattern Recognit Lett 29(3):173–180

    Article  Google Scholar 

  35. Zambanini S, Kampel M (2013) A local image descriptor robust to illumination changes. In: Kmrinen JK, Koskela M (eds) Image analysis, no. 7944 in lecture notes in computer science. Springer, Berlin, pp 11–21

  36. Zhang L, Zhang D, Guo Z, Zhang D (2010) Monogenic-LBP: a new approach for rotation invariant texture classification. In: 2010 17th IEEE international conference on image processing (ICIP), pp 2677–2680

  37. Zitov B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Dall’Alba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dall’Alba, D., Fiorini, P. BIPCO: ultrasound feature points based on phase congruency detector and binary pattern descriptor. Int J CARS 10, 843–854 (2015). https://doi.org/10.1007/s11548-015-1204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1204-3

Keywords

Navigation