Skip to main content
Log in

Tissue surface information for intraoperative incision planning and focus adjustment in laser surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Introducing computational methods to laser surgery are an emerging field. Focusing on endoscopic laser interventions, a novel approach is presented to enhance intraoperative incision planning and laser focusing by means of tissue surface information obtained by stereoscopic vision.

Methods

Tissue surface is estimated with stereo-based methods using nonparametric image transforms. Subsequently, laser-to-camera registration is obtained by ablating a pattern on tissue substitutes and performing a principle component analysis for precise laser axis estimation. Furthermore, a virtual laser view is computed utilizing trifocal transfer. Depth-based laser focus adaptation is integrated into a custom experimental laser setup in order to achieve optimal ablation morphology. Experimental validation is conducted on tissue substitutes and ex vivo animal tissue.

Results

Laser-to-camera registration gives an error between planning and ablation of less than 0.2 mm. As a result, the laser workspace can accurately be highlighted within the live views and incision planning can directly be performed. Experiments related to laser focus adaptation demonstrate that ablation geometry can be kept almost uniform within a depth range of 7.9 mm, whereas cutting quality significantly decreases when the laser is defocused.

Conclusions

An automatic laser focus adjustment on tissue surfaces based on stereoscopic scene information is feasible and has the potential to become an effective methodology for optimal ablation. Laser-to-camera registration facilitates advanced surgical planning for prospective user interfaces and augmented reality extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andreff N, Tamadazte B, Dembélé S, Hussnain ZE (2013) Preliminary variation on multiview geometry for vision-guided laser surgery. In: Workshop on multi-view geometry in, robotics, MVIGRO’2013, pp 1–10

  2. Böttcher A, Jowett N, Kucher S, Reimer R, Schumacher U, Knecht R, Wöllmer W, Münscher A, Dalchow C (2013) Use of a microsecond er:yag laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed co2 laser. Eur Arch Oto-Rhino-Laryngol, pp 1–8. doi:10.1007/s00405-013-2761-0

  3. Bradski G (2000) The OpenCV Library. Dr. Dobb’s J Softw Tools. http://www.opencv.org

  4. Brunet F, Gay-Bellile V, Bartoli A, Navab N, Malgouyres R (2011) Feature-driven direct non-rigid image registration. Int J Comput Vis 93:33–52

    Article  Google Scholar 

  5. Chang PL, Stoyanov D, Davison A, Edwards P (2013) Real-time dense stereo reconstruction using convex optimisation with a cost-volume for image-guided robotic surgery. In: Proceedings of MICCAI 2013, vol 8149, pp 42–49

  6. Fuchs A, Schultz M, Krüger A, Kundrat D, Diaz Diaz J, Ortmaier T (2012) Online measurement and evaluation of the er: yag laser ablation process using an integrated oct system. In: Proceedings of biomedizinische technik/biomedical, engineering, pp 434–437. doi:10.1515/bmt-2012-4231

  7. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, second edn. Cambridge University Press, ISBN:0521540518

  8. Herdman RCD, Charlton A, Hinton AE, Freemont AJ (1993) An in vitro comparison of the erbium:yag laser and the carbon dioxide laser in laryngeal surgery. J Laryngol Otol 107:908–911. doi:10.1017/S0022215100124764

    CAS  PubMed  Google Scholar 

  9. Hinni LH, Salassa JR, Grant DG, Pearson BW, Hayden RE, Martin A, Christiansen H, Haughey BH, Nussenbaum B, Steiner W (2007) Transoral laser microsurgery for advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg 133(12):1198–1204. doi:10.1001/archotol.133.12.1198

    Article  PubMed  Google Scholar 

  10. Jako GJ (1972) Laser surgery of the vocal cordsan experimental study with carbon dioxide lasers on dogs. Laryngoscope 82(12):2204–2216. doi:10.1288/00005537-197212000-00009

    Article  CAS  PubMed  Google Scholar 

  11. Kahrs LA, Burgner J, Klenzner T, Raczkowsky J, Schipper J, Wörn H (2010) Planning and simulation of microsurgical laser bone ablation. Int J Comput Assist Radiol Surg 5(2):155–162. doi:10.1007/s11548-009-0303-4

    Article  PubMed  Google Scholar 

  12. Kalentev O, Rai A, Kemnitz S, Schneider R (2011) Connected component labeling on a 2d grid using cuda. J Parallel Distrib Comput 71(4):615–620. doi:10.1016/j.jpdc.2010.10.012

    Article  Google Scholar 

  13. Kundrat D, Schoob A, Munske B, Ortmaier T (2013) Towards an endoscopic device for laser-assisted phonomicrosurgery. In: Proceedings of the Hamlyn symposium on medical, robotics, pp 55–56

  14. Lau W, Ramey N, Corso J, Thakor N, Hager G (2004) Stereo-based endoscopic tracking of cardiac surface deformation. In: Proceedings of MICCAI, vol 3217, pp 494–501

  15. Li ZZ, Reinisch L, Van de Merwe WP (1992) Bone ablation with er:yag and co2 laser: study of thermal and acoustic effects. Lasers Surg Med 12(1):79–85. doi:10.1002/lsm.1900120112

    Article  CAS  PubMed  Google Scholar 

  16. Lüerssen K, Lubatschowski H, Ptok M (2007) Erbium:yag-laserchirurgie an stimmlippengewebe. HNO 55(6):443–446. doi:10.1007/s00106-006-1479-3

    Article  PubMed  Google Scholar 

  17. Mattos LS, Deshpande N, Barresi G, Guastini L, Peretti G (2013) A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope pp n/a–n/a. doi:10.1002/lary.24566

  18. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32(1):12–16

    Google Scholar 

  19. Pantilie C, Nedevschi S (2012) Optimizing the census transform on cuda enabled gpus. In: IEEE international conference on intelligent computer communication and processing (ICCP), pp 201–207. doi:10.1109/ICCP.2012.6356186

  20. Patel S, Rajadhyaksha M, Kirov S, Li Y, Toledo-Crow R (2012) Endoscopic laser scalpel for head and neck cancer surgery. doi:10.1117/12.909172

  21. Peretti G, Piazza C, Bon F, Mora R, Grazioli P, Barbieri D, Mangili S, Nicolai P (2013) Function preservation using transoral laser surgery for t2–t3 glottic cancer: oncologic, vocal, and swallowing outcomes. Eur Arch of Oto-Rhino-Laryngol 270(8):2275–2281. doi:10.1007/s00405-013-2461-9

    Article  Google Scholar 

  22. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) Ros: an open-source robot operating system. In: Proc. of the IEEE intl. conf. on robotics and automation (ICRA) workshop on open source robotics. Kobe, Japan

  23. Remacle M, Ricci-Maccarini A, Matar N, Lawson G, Pieri F, Bachy V, Nollevaux MC (2012) Reliability and efficacy of a new co2 laser hollow fiber: a prospective study of 39 patients. Eur Arch Oto-Rhino-Laryngol 269(3):917–921. doi:10.1007/s00405-011-1822-5

    Article  Google Scholar 

  24. Richa R, Poignet P, Liu C (2010) Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model. Int J Robot Res 29(2–3):218–230. doi:10.1177/0278364909356600

    Article  Google Scholar 

  25. Röhl S, Bodenstedt S, Suwelack S, Kenngott H, Muller-Stich BP, Dillmann R, Speidel S (2012) Dense gpu-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Med Phys 39:1632. doi:10.1118/1.3681017

    Article  PubMed  Google Scholar 

  26. Rubinstein M, Armstrong W (2011) Transoral laser microsurgery for laryngeal cancer: a primer and review of laser dosimetry. Lasers Med Sci 26(1):113–124. doi:10.1007/s10103-010-0834-5

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schoob A, Podszus F, Kundrat D, Kahrs L, Ortmaier T (2013) Stereoscopic surface reconstruction in minimally invasive surgery using efficient non-parametric image transforms. In: Proceedings of th 3rd joint workshop on new technologies for computer/robot assisted surgery (CRAS), pp 26–29

  28. Seki T, Oka K, Naganawa A, Yamashita H, Kim K, Chiba T (2010) Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery. Opt Lasers Eng 48(10):974–977. doi:10.1016/j.optlaseng.2010.05.010

    Article  Google Scholar 

  29. Steiner W, Ambrosch P (2000) Endoscopic laser surgery of the upper aerodigestive tract: with special emphasis on cancer surgery. Thieme, Stuttgart

    Google Scholar 

  30. Stoyanov D, Scarzanella M, Pratt P, Yang GZ (2010) Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Proceedings of MICCAI, vol 6361, pp 275–282

  31. Strong MS (1975) Laser excision of carcinoma of the larynx. Laryngoscope 85(8):1286–1289. doi:10.1288/00005537-197508000-00003

    Article  CAS  PubMed  Google Scholar 

  32. Suarez C, Rodrigo J (2013) Transoral microsurgery for treatment of laryngeal and pharyngeal cancers. Curr Oncol Rep 15(2):134–141. doi:10.1007/s11912-012-0286-0

    Article  PubMed  Google Scholar 

  33. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, 1998, pp 839–846. doi:10.1109/ICCV.1998.710815

  34. Vaughan CW, Strong M, Jako GJ (1978) Laryngeal carcinoma: transoral treatment utilizing the co2 laser. Am J Surg 136(4):490–493. doi:10.1016/0002-9610(78)90267-2

    Article  CAS  PubMed  Google Scholar 

  35. Walsh JT, Flotte TJ, Anderson RR, Deutsch TF (1988) Pulsed co2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med 8(2):108–118. doi:10.1002/lsm.1900080204

    Article  PubMed  Google Scholar 

  36. Walsh JT, Flotte TJ, Deutsch TF (1989) Er:yag laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 9(4):314–326. doi:10.1002/lsm.1900090403

    Article  PubMed  Google Scholar 

  37. Xu C, Prince JL (1998) Generalized gradient vector flow external forces for active contours. Signal Process 71(2):131–139. doi:10.1016/S0165-1684(98)00140-6

    Article  Google Scholar 

  38. Yamanaka N, Yamashita H, Masamune K, Liao H, Chiba T, Dohi T (2009) A coaxial laser endoscope with arbitrary spots in endoscopic view for fetal surgery. In: Proceedings of MICCAI 2009. Springer, pp 83–90

  39. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. doi:10.1109/34.888718

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to the presented results has received funding from the European Union Seventh Framework Programme FP7/2007–2013 Challenge 2 Cognitive Systems, Interaction, Robotics under grant agreement \(\mu \)RALP - n\(^\mathrm {o}\) 288663.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schoob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoob, A., Kundrat, D., Kleingrothe, L. et al. Tissue surface information for intraoperative incision planning and focus adjustment in laser surgery. Int J CARS 10, 171–181 (2015). https://doi.org/10.1007/s11548-014-1077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1077-x

Keywords

Navigation