Advertisement

Surgical planning tool for robotically assisted hearing aid implantation

  • Nicolas Gerber
  • Brett Bell
  • Kate Gavaghan
  • Christian Weisstanner
  • Marco Caversaccio
  • Stefan Weber
Review Article

Abstract

Purpose

For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed.

Methods

   Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed.

Results

   The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of \(0.15\pm 0.08\) mm.

Conclusions

   Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.

Keywords

Surgical planning Hearing aid implantation Robotically assisted microsurgery Segmentation 

References

  1. 1.
    Häusler R (2002) Cochlear implantation without mastoidectomy: the pericanal electrode insertion technique. Acta oto-laryngologica 122(7):715–719PubMedCrossRefGoogle Scholar
  2. 2.
    Kronenberg J, Baumgartner W, Migirov L, Dagan T, Hildesheimer M (2004) The suprameatal approach: an alternative surgical approach to cochlear implantation. Otol Neurotol 25(1):41–44 (discussion 44–45)Google Scholar
  3. 3.
    Warren FM, Balachandran R, Fitzpatrick JM, Labadie RF (2007) Percutaneous cochlear access using bone-mounted, customized drill guides demonstration of concept in vitro. Otol Neurotol 28(3):325–329PubMedCrossRefGoogle Scholar
  4. 4.
    Schipper J, Aschendorff A, Arapakis I, Klenzner T, Teszler CB, Ridder GJ, Laszig R (2004) Navigation as a quality management tool in cochlear implant surgery. J Laryngol Otol 118(10):764–770PubMedCrossRefGoogle Scholar
  5. 5.
    Labadie RF, Chodhury P, Cetinkaya E, Balachandran R, Haynes DS, Fenlon MR, Jusczyzck AS, Fitzpatrick JM (2005) Minimally invasive, image-guided, facial-recess approach to the middle ear: demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol 26(4):557–562PubMedCrossRefGoogle Scholar
  6. 6.
    Balachandran R, Mitchell JE, Blachon G, Noble JH, Dawant BM, Fitzpatrick JM, Labadie RF (2010) Percutaneous cochlear implant drilling via customized frames: an in vitro study. Otolaryngol Head Neck Surg Off J Am Acad Otolaryngol Head Neck Surg 142(3):421–426Google Scholar
  7. 7.
    Labadie RF, Mitchell J, Balachandran R, Fitzpatrick JM (2009) Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int J Comput Assist Radiol Surg 4(3):273–280PubMedCrossRefGoogle Scholar
  8. 8.
    Majdani O, Thews K, Bartling S, Leinung M, Dalchow C, Labadie R, Lenarz T, Heidrich G (2009) Temporal bone imaging: comparison of flat panel volume CT and multisection CT. AJNR Am J Neuroradiol 30(7):1419–1424PubMedCrossRefGoogle Scholar
  9. 9.
    Klenzner T, Ngan CC, Knapp FB, Knoop H, Kromeier J, Aschendorff A, Papastathopoulos E, Raczkowsky J, Wörn H, Schipper J (2009) New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol 266(7):955–960PubMedCrossRefGoogle Scholar
  10. 10.
    Baron S, Eilers H, Munske B, Toennies JL, Balachandran R, Labadie RF, Ortmaier T, Webster RJ (2010) Percutaneous inner-ear access via an image-guided industrial robot system. Proc Inst Mech Eng Part H J Eng Med 224(5):633–649CrossRefGoogle Scholar
  11. 11.
    Noble JH, Majdani O, Labadie RF, Dawant B, Fitzpatrick JM (2010) Automatic determination of optimal linear drilling trajectories for cochlear access accounting for drill-positioning error. Int J Med Robot 6(3):281–290Google Scholar
  12. 12.
    Rodt T, Ratiu P, Becker H, Bartling S, Kacher DF, Anderson M, Jolesz F a, Kikinis R (2002) 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Neuroradiology 44(9):783–790PubMedCrossRefGoogle Scholar
  13. 13.
    Jun B-C, Song S-W, Cho J-E, Park C-S, Lee D-H, Chang K-H, Yeo S-W (2005) Three-dimensional reconstruction based on images from spiral high-resolution computed tomography of the temporal bone: anatomy and clinical application. J Laryngol Otol 119(9):693–698PubMedCrossRefGoogle Scholar
  14. 14.
    Noble JH, Dawant BM, Warren FM, Labadie RF (2009) Automatic identification and 3D rendering of temporal bone anatomy. Otol Neurotol 30(4):436–442PubMedCrossRefGoogle Scholar
  15. 15.
    Jang HG, Chung MS, Shin DS, Park SK, Cheon KS, Park HS, Park JS (2011) Segmentation and surface reconstruction of the detailed ear structures, identified in sectioned images. Anat Rec (Hoboken, NJ: 2007) 294(4):559–564Google Scholar
  16. 16.
    Ma Z, Tavares JMRS, Jorge RN, Mascarenhas T (2010) A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Eng 13(2):235–246CrossRefGoogle Scholar
  17. 17.
    Ferreira A, Gentil F, Tavares JM (2012) Segmentation algorithms for ear image data towards biomechanical studies. Comput Methods Biomech Biomed Eng PP 1–17Google Scholar
  18. 18.
    Fitzpatrick JM, West JB, Maurer CR (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702PubMedCrossRefGoogle Scholar
  19. 19.
    Schermeier O, Lueth T, Glagau J, Szymanski D, Tita R, Hildebrand D, Klein M, Nelson K, Bier J (2002) Automatic patient registration in computer assisted maxillofacial surgery. Stud Health Technol Inform 85:461–467PubMedGoogle Scholar
  20. 20.
    Labadie RF, Shah RJ, Harris SS, Cetinkaya E, Haynes DS, Fenlon MR, Juscyzk AS, Galloway RL, Fitzpatrick JM (2004) Submillimetric target-registration error using a novel, non-invasive fiducial system for image-guided otologic surgery. Comput Aided Surg Off J Int Soc Comput Aided Surg 9(4):145–153Google Scholar
  21. 21.
    Wang MY, Maurer CR, Fitzpatrick JM, Maciunas RJ (1996) An automatic technique for finding and localizing externally attached markers in CT and MR volume images of the head. IEEE Trans Bio-med Eng 43(6):627–637Google Scholar
  22. 22.
    Gu L, Peters T (2004) 3D Automatic fiducial marker localization approach for frameless stereotactic neuro-surgery navigation morphological treatment for the detection of fiducial markers. In: MIAR 2004, vol LNCS 3150, pp 329–336Google Scholar
  23. 23.
    Krishnan R, Hermann E, Wolff R, Zimmermann M, Seifert V, Raabe A (2003) Automated fiducial marker detection for patient registration in image-guided neurosurgery. Comput Aided Surg Off J Int Soc Comput Aided Surg 8(1):17–23CrossRefGoogle Scholar
  24. 24.
    Maurer CR, Fitzpatrick JM, Wang MY, Galloway RL, Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4):447–462PubMedCrossRefGoogle Scholar
  25. 25.
    Maurer CR, Fitzpatrick JM, Wang MY, Maciuna RJ (1993) Estimation of localization accuracy for markers in multimodal volume images. In: Proceedings of the 15th annual international conference of the IEEE engineering in medicine and biology societ, vol Im, no 2, pp 124–125Google Scholar
  26. 26.
    Wang M, Song Z (2008) Automatic detection of fiducial marker center based on shape index and curvedness. In: MIAR 2008, vol LNCS 5128, pp 81–88Google Scholar
  27. 27.
    Bell B, Stieger C, Gerber N, Arnold A, Nauer C, Hamacher V, Kompis M, Nolte L, Caversaccio M, Weber S (2012) A self-developed and constructed robot for minimally invasive cochlear implantation. Acta oto-laryngologica 132(4):355–360PubMedCrossRefGoogle Scholar
  28. 28.
    Gerber N, Gavaghan K, Bell B, Williamson T, Weisstanner C, Caversaccio M, Weber S (2013) High accuracy patient-to-Image registration for the facilitation of image guided robotic microsurgery on the head. IEEE Trans Bio-med Eng 60(4):960–968CrossRefGoogle Scholar
  29. 29.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169CrossRefGoogle Scholar
  30. 30.
    Kanitsar A, Fleischmann D, Wegenkittl R, Felkel P, Gröller ME (2002) CPR-curved planar reformation. In: IEEE visualization, 2002 (VIS 2002), pp 37–44Google Scholar
  31. 31.
    Bell B, Gerber N, Williamson T, Gavaghan KA, Wimmer W, Caversaccio M, Weber S (2013) In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol Neurotol (in press)Google Scholar
  32. 32.
    Olabarriaga SD, Smeulders AW (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5(2):127–142PubMedCrossRefGoogle Scholar
  33. 33.
    Williamson TM, Bell BJ, Gerber N, Salas L, Zysset P, Caversaccio M, Weber S (2013) Estimation of tool pose based on force-density correlation during robotic drilling. IEEE Trans Bio-med Eng 60(4):969–976CrossRefGoogle Scholar

Copyright information

© CARS 2013

Authors and Affiliations

  • Nicolas Gerber
    • 1
  • Brett Bell
    • 1
  • Kate Gavaghan
    • 1
  • Christian Weisstanner
    • 2
  • Marco Caversaccio
    • 3
  • Stefan Weber
    • 1
  1. 1.ARTORG Center for Biomedical Engineering Research University of BernBernSwitzerland
  2. 2.Institute of Diagnostic and Interventional Neuroradiology University Hospital of Bern (Inselspital)Bern Switzerland
  3. 3.Department of Ear, Nose and Throat Diseases (ENT), Head and Neck SurgeryUniversity Hospital of Bern (Inselspital)BernSwitzerland

Personalised recommendations