Skip to main content


Log in

The Medical Imaging Interaction Toolkit: challenges and advances

10 years of open-source development

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript



   The Medical Imaging Interaction Toolkit (MITK) has been available as open-source software for almost 10 years now. In this period the requirements of software systems in the medical image processing domain have become increasingly complex. The aim of this paper is to show how MITK evolved into a software system that is able to cover all steps of a clinical workflow including data retrieval, image analysis, diagnosis, treatment planning, intervention support, and treatment control.


   MITK provides modularization and extensibility on different levels. In addition to the original toolkit, a module system, micro services for small, system-wide features, a service-oriented architecture based on the Open Services Gateway initiative (OSGi) standard, and an extensible and configurable application framework allow MITK to be used, extended and deployed as needed. A refined software process was implemented to deliver high-quality software, ease the fulfillment of regulatory requirements, and enable teamwork in mixed-competence teams.


   MITK has been applied by a worldwide community and integrated into a variety of solutions, either at the toolkit level or as an application framework with custom extensions. The MITK Workbench has been released as a highly extensible and customizable end-user application. Optional support for tool tracking, image-guided therapy, diffusion imaging as well as various external packages (e.g. CTK, DCMTK, OpenCV, SOFA, Python) is available. MITK has also been used in several FDA/CE-certified applications, which demonstrates the high-quality software and rigorous development process.


   MITK provides a versatile platform with a high degree of modularization and interoperability and is well suited to meet the challenging tasks of today’s and tomorrow’s clinically motivated research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others















  14. The static (de-) initialization order fiasco is well known to any maintainer of a large C++ software system.

  15. OSGi Alliance,




  19. The Eclipse Rich Client Platform is best known as the basis for the Eclipse IDE,

  20. IEC 62304, B.8.2 Change control: CHANGE REQUESTS can be approved by a change control board or by a manager or technical lead according to the software configuration management plan. Approved CHANGE REQUESTS are made traceable to the actual modification and VERIFICATION of the software. The requirement is that each actual change be linked to a CHANGE REQUEST and that documentation exists to show that the CHANGE REQUEST was approved. The documentation might be change control board minutes, an approval signature, or a record in a database.









  1. Allard J, Cotin S, Faure F, Bensoussan P, Poyer F, Duriez C, Delingette H, Grisoni L (2007) SOFA: an open source framework for medical simulation. In: Medicine meets virtual reality (MMVR 15)

  2. Baumhauer M, Simpfendörfer T, Stich BM, Teber D, Gutt C, Rassweiler J, Meinzer HP, Wolf I (2008) Soft tissue navigation for laparoscopic partial nephrectomy. Int J Comput Assist Radiol Surg 3:307–314

    Article  Google Scholar 

  3. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly, Ireland

  4. Chacon S (2009) Pro git. Apress, New York City

  5. Enquobahrie A, Cheng P, Gary K, Ibanez L, Gobbi D, Lindseth F, Yaniv Z, Aylward S, Jomier J, Cleary K (2007) The image-guided surgery toolkit IGSTK: an open source C++ software toolkit. J Digit Imaging 20(Suppl 1):21–33. doi:10.1007/s10278-007-9054-3

    Google Scholar 

  6. Franz AM, Seitel A, Servatius M, Zöllner C, Gergel I, Wegner I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Sommer CM, Radeleff, BA, Schlemmer HP, Kauczor HU, Meinzer HP, Maier-Hein L (2012) Simplified development of image-guided therapy software with MITK-IGT. In: SPIE medical imaging 2012: image-guided procedures, robotic interventions, and modeling, vol 8316, p 83162J (8 pages). doi:10.1117/12.911421

  7. Fritzsche KH, Neher P, Reicht I, Bruggen T, Goch C, Reisert M, Nolden M, Zelzer S, Meinzer H, Stieltjes B (2012) Mitk diffusion imaging. Methods Inf Med 51(5):441–448

    Article  PubMed  CAS  Google Scholar 

  8. Gergel I, Tetzlaff R, Meinzer HP, Wegner I (2011) An electromagnetic navigation system for transbronchial interventions with a novel approach to respiratory motion compensation. Med Phys 38:6742–6753

    Article  PubMed  Google Scholar 

  9. Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software guide, 2nd edn. Kitware, Inc. ISBN 1-930934-15-7

  10. Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482(7386):485–488. doi:10.1038/nature10836

    Article  PubMed  CAS  Google Scholar 

  11. Kennedy DN, Haselgrove C, Buccigrossi R, Grethe JS (2009) Software development for neuroimaging: promoting community access and best practices through nitrc. In: ISBI. IEEE, pp 1146–1149

  12. Lakos J (1996) Large-scale C++ software design. Addison-Wesley professional computing series. Addison-Wesley.

  13. Lehmann G, Pincus Z, Regrain B (2006) WrapITK: enhanced languages support for the insight toolkit. Insight J 1

  14. McAffer J, Lemieux J, Aniszczyk C (2010) Eclipse rich client platform. Eclipse Series. Pearson Education.

  15. Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J CARS 1–13. doi:10.1007/s11548-013-0828-4

  16. Neuhaus J, Maleike D, Nolden M, Kenngott HG, Meinzer HP, Wolf I (2009) A quality-refinement process for medical imaging applications. Method Inform Med 48(4):336–339. doi:10.3414/ME9232

    Article  CAS  Google Scholar 

  17. Nevatia Y, Chintamani K, Meyer T, Blum T, Runge A, Fritz N (2011) Computer aided medical diagnosis and surgery system: towards automated medical diagnosis for long term space missions. In: 11th symposium on advanced space technologies in robotics and automation (ASTRA). esa

  18. OSGI Alliance (2009) OSGi Service Platform, core specification, release 4, version 4.2. Technical report, OSGI Alliance

  19. Parker SG, Johnson CR (1995) SCIRun: a scientific programming environment for computational steering. SC conference 0, 52. doi:10.1109/SUPERC.1995.66

  20. Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: IEEE international symposium on biomedical imaging: from Nano To Macro, pp 632–635

  21. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional dicom images. J Digit Imaging 17:205–216. doi:10.1007/s10278-004-1014-6

    Article  PubMed  Google Scholar 

  22. Saruji D, Müller M, Meinzer HP (2011) Schnelles Prototyping für die medizinische Bildverarbeitung. In: Handels H, Erhardt J, Deserno T, Meinzer HP, Tolxdorff T (eds) Bildverarbeitung für die Medizin, pp 199–203. Lübeck, Germany

  23. Seitel A, Engel M, Sommer CM, Radeleff BA, Essert-Villard C, Baegert C, Fangerau M, Fritzsche KH, Yung K, Meinzer HP, Maier-Hein L (2011) Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 38(6):3246–3259

    Article  PubMed  Google Scholar 

  24. Seitel A, Yung K, Mersmann S, Kilgus T, Groch A, dos Santos T, Franz A, Nolden M, Meinzer H, Maier-Hein L (2012) MITK-ToF: range data within MITK. Int J Comput Assist Radiol Surg 7(1):87–96

    Article  PubMed  Google Scholar 

  25. Wolf I (2011) Toolkits and software for developing biomedical image processing and analysis applications. In: Deserno TM (ed) Biomedical image processing, biological and medical physics, biomedical engineering. Springer, Berlin, pp 521–544. doi:10.1007/978-3-642-15816-2_21

  26. Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604. doi:10.1016/

    Article  PubMed  Google Scholar 

Download references


We wish to thank the contributors to MITK, which cannot all be listed here. There have been more than one hundred over the time, more than fifty active ones in the last twelve months, thank you! Special thanks to Matt Clarkson for last minute proof-reading!

Conflict of Interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to Marco Nolden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolden, M., Zelzer, S., Seitel, A. et al. The Medical Imaging Interaction Toolkit: challenges and advances. Int J CARS 8, 607–620 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: