Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique

Abstract

Purpose

Percutaneous lung biopsies (PLBs) performed for the evaluation of pulmonary masses require image guidance to avoid critical structures. A new CT navigation system (SIRIO, “Sistema robotizzato assistito per il puntamento intraoperatorio”) for PLBs was validated.

Methods

The local Institutional Review Board approved this retrospective study. Image-guided PLBs in 197 patients were performed with a CT navigation system (SIRIO). The procedures were reviewed based on the number of CT scans, patients’ radiation exposure and procedural time recorded. Comparison was performed with a group of 72 patients undergoing standard CT-guided PLBs. Sensitivity, specificity and overall diagnostic accuracy were assessed in both groups.

Results

SIRIO-guided PLBs showed a significant reduction in procedure time, number of required CT scans and the radiation dose administered to patients (\(p<0.001\)). In terms of diagnostic accuracy, SIRIO proved to be more accurate for small-sized lesions (\(<\)20 mm) than standard CT-guidance.

Conclusion

SIRIO proved to be a reliable and effective tool when performing CT-guided PLBs and was especially useful for sampling small (\(<\)20 mm) lesions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jin KN, Park CM, Goo JM, Lee HJ, Lee Y, Kim JI, Choi SY, Kim HC (2010) Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems. Eur Radiol 20(9):2108–2115

    Google Scholar 

  2. 2.

    Yaniv Z, Cheng P, Wilson E et al (2010) Needle-based interventions with the image-guided surgery toolkit (IGSTK): from phantoms to clinical trials. IEEE Trans Biomed Eng 57(4):922–933

    PubMed  Article  Google Scholar 

  3. 3.

    Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16(4):493–505

    PubMed  Article  Google Scholar 

  4. 4.

    Hoheisel M, Skalej M, Beuing O, Bill U, Klingenbeck-Regn K, Petzold R et al (2009) Kyphoplasty interventions using a navigation system and C-arm CT data: first clinical results. In: Medical imaging 2009: physics of medical imaging. Proceedings of SPIE, vol 7258, 72580E

  5. 5.

    Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN (2011) Electromagnetic navigation system for CT-guided biopsy of small lesions. AJR Am J Roentgenol 196(5):1194–1200

    PubMed  Article  Google Scholar 

  6. 6.

    Bruners P, Penzkofer T, Nagel M, Elfring R, Gronloh N, Schmitz-Rode T et al (2009) Electromagnetic tracking for CT-guided spine interventions: phantom, ex-vivo and in-vivo results. Eur Radiol 19(4):990–994

    PubMed  Article  Google Scholar 

  7. 7.

    Meier-Meitinger M, Nagel M, Kalender W, Bautz WA, Baum U (2008) Computer-assisted navigation system for interventional CT-guided procedures: results of phantom and clinical studies. Rofo 180(4):310–317

    Google Scholar 

  8. 8.

    Aghayev E, Ebert LC, Christe A, Jackowski C, Rudolph T, Kowal J et al (2008) CT data-based navigation for post-mortem biopsy-a feasibility study. J Forensic Leg Med 15(6):382–387

    PubMed  Article  Google Scholar 

  9. 9.

    Khan MF, Dogan S, Maataoui A, Gurung J, Schiemann M, Ackermann H et al (2005) Accuracy of biopsy needle navigation using the Medarpa system-computed tomography reality superimposed on the site of intervention. Eur Radiol 5(11):2366–2374

    Article  Google Scholar 

  10. 10.

    Khan MF, Dogan S, Maataoui A, Wesarg S, Gurung J, Ackermann H et al (2006) Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system. Invest Radiol 41(10):713–720

    PubMed  Article  Google Scholar 

  11. 11.

    Wallace MJ, Gupta S, Hicks ME (2009) Out-of-plane computed-tomography-guided biopsy using a magnetic-field-based navigation system. Cardiovasc Intervent Radiol 29(1):108–113

    Article  Google Scholar 

  12. 12.

    Grand DJ, Atalay MA, Cronan JJ, Mayo-Smith WW, Dupuy DE (2011) CT-guided percutaneous lung biopsy: comparison of conventional CT fluoroscopy to CT fluoroscopy with electromagnetic navigation system in 60 consecutive patients. Eur J Radiol 79(2):e133–e136

    Google Scholar 

  13. 13.

    Brunetti G (2010) SIRIO users’s manual. Masmec S.p.A, Modugno

    Google Scholar 

  14. 14.

    Council Directive 93/42/EEC concerning medical devices (1993). Official Journal of the European Communities No L 169/1

  15. 15.

    Office for Official Publications of the European Communities (1999) European guidelines on quality criteria for computed tomography, Luxembourg

  16. 16.

    Yamagami T, Iida S, Kato T, Tanaka O, Nishimura T (2003) Combining fine-needle aspiration and core biopsy under CT fluoroscopy guidance: a better way to treat patients with lung nodules? AJR Am J Roentgenol 181(4):1011–1015

    PubMed  Article  Google Scholar 

  17. 17.

    Sconfienza LM, Mauri G, Grossi F, Truini M, Serafini G, Sardanelli F et al (2012) Pleural and peripheral lung lesions: comparison of US- and CT-guided Biopsy. Radiology (epub ahead of print)

  18. 18.

    Lal H, Neyaz Z, Nath A, Borah S (2012) CT-guided percutaneous biopsy of intrathoracic lesions. Korean J Radiol 13(2):210–226

    PubMed  Article  Google Scholar 

  19. 19.

    Kim GR, Hur J, Lee SM, Lee HJ, Hong YJ, Nam JE et al (2010) CT fluoroscopy-guided lung biopsy versus conventional CT-guided lung biopsy: a prospective controlled study to assess radiation doses and diagnostic performance. Eur Radiol 21(2):232–239

    PubMed  Article  Google Scholar 

  20. 20.

    Braak SJ, Herder GJ, van Heesewijk JP, van Strijen MJ (2011) Pulmonary masses: initial results of cone-beam C guidance with needle planning software for percutaneous lung biopsy. Cardiovasc Intervent Radiol (epub ahead of print)

  21. 21.

    Bolger C, Wigfield C (2000) Image guided surgery: applications to the cervical and thoracic spine and a review of the first 120 procedures. J Neurosurg Spine 92:175–180

    Article  CAS  Google Scholar 

  22. 22.

    Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240 (discussion 241)

    Google Scholar 

  23. 23.

    Schwarz Y, Mehta AC, Ernst A, Herth F, Engel A, Besser D et al (2003) Electromagnetic navigation during flexible bronchoscopy. Respiration 70:516–522

    PubMed  Article  Google Scholar 

  24. 24.

    Coenen VA, Krings T, Axer H et al (2003) Intraoperative three-dimensional visualization of the pyramidal tract in neuronavigation system (PTV) reliability predicts true position of principal motor pathways. Surg Neurol 60(5):381–390

    Google Scholar 

  25. 25.

    Klein JS, Salomon G, Stewart EA (1996) Transthoracic needle biopsy with a coaxially placed 20-gauge automated cutting needle: results in 122 patients. Radiology 198(3):715–720

    PubMed  CAS  Google Scholar 

  26. 26.

    Tsukada H, Satou T, Iwashima A, Souma T (2000) Diagnostic accuracy of CT-guided automated needle biopsy of lung nodules. AJR Am J Roentgenol 175(1):239–243

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Laurent F, Latrabe V, Vergier B, Montaudon M, Vernejoux JM, Dubrez J (2000) CT-guided transthoracic needle biopsy of pulmonary nodules smaller than 20 mm: results with an automated 20-gauge coaxial cutting needle. Clin Radiol 55(4):281–287

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Lucidarme O, Howarth N, Finet JF, Grenier P (1998) Intrapulmonary lesions: percutaneous automated biopsy with a detachable, 18-gauge, coaxial cutting needle. Radiology 207(3):759–765

    PubMed  CAS  Google Scholar 

  29. 29.

    Krücker J, Xu S, Glossop N, Viswanathan A, Borgert J, Schulz H et al (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18(9):1141–1150

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

Authors have no conflict of interest to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. L. Cazzato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grasso, R.F., Faiella, E., Luppi, G. et al. Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique. Int J CARS 8, 837–848 (2013). https://doi.org/10.1007/s11548-013-0816-8

Download citation

Keywords

  • Optical tracking
  • CT scan
  • Lung biopsy
  • Virtual navigation guidance