Skip to main content

Advertisement

Log in

Left ventricular myocardium segmentation on delayed phase of multi-detector row computed tomography

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Rationale and objectives

Advanced ischemic heart disease is usually accompanied by left ventricular (LV) myocardial volume loss and an abnormal enhancing pattern on delayed phase of multi-detector row computed tomography (MDCT). To assist radiologists and physicians in estimating the LV myocardial volume on delayed phase, this paper proposes an adaptive segmentation method for contouring the myocardial region in the delayed-phase MDCT and for computing the volume.

Materials and methods

The proposed method uses an anisotropic diffusion filter as a preprocessing procedure to enhance contrast and reduce specks in MDCT imaging. This work picks the middle of mid-ventricular level image slices as the lead slice. The proposed method develops two contouring modes to sketch the myocardium contour on the lead slice. By establishing the obtained contours as the initial contours, the region-growing method is employed to identify the contour of the myocardial region for each slice. The convex-hull finding algorithm is then used to refine the extracted contour. Finally, the width properties of the myocardial region and the morphological operators are used to obtain the entire LV myocardial volume.

Results

Twenty-seven healthy patients who had no symptoms of ischemic heart disease are examined to evaluate the performance of the proposed method. Compared with manual contours delineated by two experienced experts, the contouring results using computer simulation reveal that the proposed method reliably identifies contours similar to those obtained using manual sketching.

Conclusion

The proposed method provides robust contouring for the LV myocardium on delayed-phase MDCT. The potential role of this technique may substantially reduce the time required to sketch manually a precise contour with high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsai IC, Lee WL, Tsao CR et al (2008) Comprehensive evaluation of ischemic heart disease using MDCT. AJR Am J Roentgenol 191: 64–72

    Article  PubMed  Google Scholar 

  2. Jacquier A, Revel D, Saeed M (2008) MDCT of the myocardium: a new contribution to ischemic heart disease. Acad Radiol 15: 477–487

    Article  PubMed  Google Scholar 

  3. Mahnken AH, Muhlenbruch G, Koos R et al (2006) Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 16: 1416–1423

    Article  PubMed  Google Scholar 

  4. Tsai IC, Huang YL, Liao WC, Kuo KH, Chen MC (2009) Left ventricular myocardial volumes measured during arterial and delayed phases of multidetector row computed tomography: a study on intra- and interobserver variability. Int J Cardiovasc Imaging (formerly Cardiac Imaging) 25: 55–63

    Article  Google Scholar 

  5. Boehm T, Alkadhi H, Roffi M et al (2004) Time-effectiveness, observer-dependence, and accuracy of measurements of left ventricular ejection fraction using 4-channel MDCT. Rofo 176: 529–537

    Article  PubMed  CAS  Google Scholar 

  6. Huang YL, Jiang YR, Chen DR, Moon WK (2007) Level set contouring for breast tumor in sonography. J Digit Imaging 20: 238–247

    Article  PubMed  Google Scholar 

  7. Lynch M, Ghita O, Whelan PF (2006) Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Comput Med Imaging Graph 30: 255–262

    Article  PubMed  CAS  Google Scholar 

  8. Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27: 467–480

    Article  PubMed  CAS  Google Scholar 

  9. Karvelis PS, Tzallas AT, Fotiadis DI, Georgiou I (2008) A multichannel watershed-based segmentation method for multispectral chromosome classification. IEEE Trans Med Imaging 27: 697–708

    Article  PubMed  CAS  Google Scholar 

  10. Kuo WF, Lin CY, Sun YN (2008) Brain MR images segmentation using statistical ratio: mapping between watershed and competitive Hopfield clustering network algorithms. Comput Methods Programs Biomed 91: 191–198

    Article  PubMed  Google Scholar 

  11. Lynch M, Ghita O, Whelan PF (2006) Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Comput Med Imaging Graph 30: 255–262

    Article  PubMed  CAS  Google Scholar 

  12. Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27: 195–203

    Article  PubMed  Google Scholar 

  13. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27: 1668–1681

    Article  PubMed  Google Scholar 

  14. Chen DR, Chang RF, Kuo WJ, Chen MC, Huang YL (2002) Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med Biol 28: 1301–1310

    Article  PubMed  Google Scholar 

  15. Codella NC, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248: 1004–1012

    Article  PubMed  Google Scholar 

  16. Hamarneh G, Li X (2009) Watershed segmentation using prior shape and appearance knowledge. Image Vis Comput 27: 59–68

    Article  Google Scholar 

  17. Lotjonen J, Kivisto S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Image Anal 8: 371–386

    Article  PubMed  CAS  Google Scholar 

  18. Tsai IC, Huang YL, Kuo KH (2012) Left ventricular myocardium segmentation on arterial phase of multi-detector row computed tomography. Comput Med Imaging Graph 36: 25–37

    Article  PubMed  Google Scholar 

  19. Zhang J, Yan CH, Chui CK, Ong SH (2010) Fast segmentation of bone in CT images using 3D adaptive thresholding. Comput Biol Med 40: 231–236

    Article  PubMed  CAS  Google Scholar 

  20. Chen JH, Huang CS, Chien KC et al (2009) Breast density analysis for whole breast ultrasound images. Med Phys 36: 4933–4943

    Article  PubMed  Google Scholar 

  21. Park M, Park CW, Park M, Lee CH (2002) Algorithm for detecting human faces based on convex-hull. Opt Express 10: 274–279

    PubMed  Google Scholar 

  22. Gonzalez RC, Woods RE (2010) Morphological image processing. Digital image processing. Pearson Prentice Hall, NJ, pp, pp 649–710

    Google Scholar 

  23. Nicholson WV, Malladi R (2004) Correlation-based methods of automatic particle detection in electron microscopy images with smoothing by anisotropic diffusion. J Microsc 213: 119–128

    Article  PubMed  CAS  Google Scholar 

  24. Wang LG, Zheng C, Lin LY, Chen RY, Mei TC (2011) Fast segmentation algorithm of high resolution remote sensing image based on multiscale mean shift. Guang Pu Xue Yu Guang Pu Fen Xi 31: 177–183

    PubMed  Google Scholar 

  25. Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9: 62–66

    Article  Google Scholar 

  26. Huang Q, Zheng Y, Lu M, Wang T, Chen S (2009) A new adaptive interpolation algorithm for 3D ultrasound imaging with speckle reduction and edge preservation. Comput Med Imaging Graph 33: 100–110

    Article  PubMed  Google Scholar 

  27. Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der GJ (2004) Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 21: 1037–1044

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Len Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, IC., Huang, YL., Liu, PT. et al. Left ventricular myocardium segmentation on delayed phase of multi-detector row computed tomography. Int J CARS 7, 737–751 (2012). https://doi.org/10.1007/s11548-012-0688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0688-3

Keywords

Navigation