Skip to main content
Log in

Reconstruction of 4D deformed CT for moving anatomy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To develop a 4DCT reconstruction technique that improves time resolution when the anatomy moves with respiration.

Method

A cone-beam CT (CBCT) scan is performed and a breathing signal is acquired. At the same time a set of simulated CBCT projections is created from a prior source CT deformed by a time-dependent parametric deformation model. The model parameters are iteratively adjusted until the simulated projections optimally resemble the acquired images. This concept was tested with three different simulated deformation scenarios approximating a moving lung tumor with rigid and elastic deformation and a 3D anatomical expansion/contraction.

Results

The known deformation was accurately reconstructed in all three scenarios. The method is reasonably robust to noise and contrast mismatch in the projections

Conclusion

Matching simulated to actual CBCT projections can adequately constrain a 4D model of breathing-induced motion that occurs during acquisition of the CBCT data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ford EC, Mageras GS, Yorke E, Ling CC (2003) Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 30(1): 88–97. doi:10.1118/1.1531177

    Article  PubMed  CAS  Google Scholar 

  2. Keall PJ, Starkschall G, Shukla H et al (2004) Acquiring 4D thoracic CT scans using a multisplice helical method. Phys Med Biol 49(10): 2053–2067. doi:10.1088/0031-9155/49/10/015

    Article  PubMed  CAS  Google Scholar 

  3. Mageras GS, Pevsner A, Yorke ED et al (2004) Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys 60(3): 933–941

    Article  PubMed  Google Scholar 

  4. Taguchi K (2007) Temporal resolution and the evaluation of candidate algorithms for four-dimensional CT. Med Phys 30(4): 640–650. doi:10.1118/1.1561286

    Article  Google Scholar 

  5. Low DA, Nystrom M, Kalinin E et al (2003) A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys 30(6): 1254–1263. doi:10.1118/1.1576230

    Article  PubMed  Google Scholar 

  6. Docef A, Murphy MJ, Keall PJ, Siebers JV, Williamson JF (2005) Deformed CT reconstruction from limited projection data. International congress series, vol 1281. CARS, Computer Assisted Radiology and Surgery, pp 104–108

  7. Zeng RP, Fessler JA, Balter JM (2005) Respiratory motion estimation from slowly rotating x-ray projections. Med Phys 32(4): 984–991. doi:10.1118/1.1879132

    Article  PubMed  Google Scholar 

  8. Kybic J, Unser M (2003) Fast parametric elastic image registration. IEEE Trans Image Process 12(11): 1427–1442. doi:10.1109/TIP.2003.813139

    Article  PubMed  CAS  Google Scholar 

  9. Murphy MJ, Dieterich S (2006) Comparative performance of linear and nonlinear neural networks to predict irregular breathing. Phys Med Biol 51(22): 5903–5914. doi:10.1088/0031-9155/51/22/012

    Article  PubMed  Google Scholar 

  10. Seppenwoolde Y, Shirato H, Kitamura K (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53: 822–834. doi:10.1016/S0360-3016(02)02803-1

    PubMed  Google Scholar 

  11. Moré JJ (1977) The Levenberg–Marquardt algorithm: implementation and theory, numerical analysis. Lecture notes in mathematics, vol 630. Springer, Heidelberg, pp 105–116

  12. Ben-Israel A, Greville T (2003) Generalized inverses: theory and applications. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alen Docef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docef, A., Murphy, M.J. Reconstruction of 4D deformed CT for moving anatomy. Int J CARS 3, 591–598 (2008). https://doi.org/10.1007/s11548-008-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0266-x

Keywords

Navigation