Skip to main content
Log in

Volume-based feature analysis of mucosa for automatic initial polyp detection in virtual colonoscopy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript



Purpose A volume-based mucosa-based polyp candidate determination scheme for automatic polyp detection in computed colonography is presented in this paper.


Different from the one-layer mucosa that is widely accepted by the existing computer-aided detection methods, a thick mucosa region of 3–5 voxels wide is extracted, which excludes the direct applications of the traditional geometrical features. A fast marching-based adaptive gradient/curvature and weighted integral curvature along normal directions (WICND) are developed for this purpose, and polyp candidates are optimally determined by computing and clustering these fast marching-based adaptive geometrical features.


By testing on 52 patients datasets in which 26 patients were found with polyps of size 4–22 mm, both the locations and number of polyp candidates detected by WICND and previously developed linear integral curvature (LIC) were compared. Not only the number of false positives (FPs) was reduced from 706 to 132 on average, but also the detection sensitivity has been slightly improved.


WICND outperformed LIC mainly by significantly reducing the number of FPs, which promises to release our burden of machine learning in the feature space, especially for those polyps smaller than 5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. O’Brien MJ, Winawer SJ, Zauber AG, Gottlieb LS, Sternberg SS, Diaz B, Dickersin GR, Ewing, Geller S, Kasimian D et al (1990) The national polyp study: Patient and polyp characteristics associated with high-grade dysplasia in colorectal adenomas. Gastroenterology 98: 371–379

    PubMed  CAS  Google Scholar 

  2. Winawer SJ, Fletcher RH, Miller L, Godlee F, Stolar MH, Mulrow CD, Woolf SH, Glick SN, Ganiats TG, Bond JH, Rosen L, Zapka JG, Olsen SJ, Giardiello FM, Sisk JE, Van Antwerp R, Brown-Davis C, Marciniak DA, Mayer RJ (1997) Colorectal cancer screening: Clinical guidelines and rationale. Gastroenterology 112: 594–642

    Article  PubMed  CAS  Google Scholar 

  3. Coin C, Wollett F, Coin J, Rowland M, Deramos R, Dandrea R (1983) Computerized radiology of the colon: a potential screening technique. Comput Radiology 7(1): 215–221

    Article  CAS  Google Scholar 

  4. Vining D, Gelfand D, Bechtold R, Scharling E, Grishaw E, Shifrin R (1994) Technical feasibility of colon imaging with helical CT and virtual reality. In: Annual meeting of American Roentgen Ray society, New Orleans, pp 104

  5. Lorensen W, Jolesz F, Kikinis R (1995) The exploration of cross-sectional data with a virtual endoscope. In: Interactive tech and new med paradigm for health care, IOS Press, Washington DC, pp 221–230

  6. Hong L, Kaufman A, Wei Y, Viswambharan A, Wax M, Liang Z (1995) 3D virtual colonoscopy. In: IEEE symposium on frontier in biomedical visualization, IEEE CS Press, Los Alamitos, pp 26–32

  7. Hong L, Liang Z, Viswambharant A, Kaufman A, Wax M (1997) Reconstruction and visualization of 3D models of colonic surface. IEEE Trans Nucl Sci 44(3): 1297–1302

    Article  Google Scholar 

  8. Hong L, Muraki S, Kaufman A, Bartz D, He T (1997) Virtual voyage: Interactive navigation in the human colon. In: Computer graphics proceedings, Annual conference series, SIGGRAPH, pp 27–34

  9. Pickharder P, Choi J, Hwang I, Butler J, Puckett M, Hildebrandt H, Wong R, Nugent P, Mysliwiec P, Schindler W (2003) Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med 349(23): 2191–2200

    Article  Google Scholar 

  10. Yee J, Akerkar G, Hung R, Steinauer-Gebauer A, Wall S, McQuaid K (2001) Colorectal neoplasia: performance characteristics of CT colonoscopy for detection in 300 patients. Radiology 219(2): 685–692

    PubMed  CAS  Google Scholar 

  11. Johnson D, Harmsen W, Wilson L, MacCarty R, Welch T, Ilstrup D, Ahlqist D (2003) Prospective blinded evaluation of CT colonoscopy for screen detection of colorectal polyps. Gastroenterology 125(2): 311–319

    Article  PubMed  Google Scholar 

  12. Ferrucci J (2001) Colon cancer screening with virtual colonoscopy: promise, polyps, politics. Am J Roentgenol 177(3): 975–988

    CAS  Google Scholar 

  13. Johnson CD, Dachman AH (2000) CT colonography: the next colon screening examination. Radiology 216: 331–341

    PubMed  CAS  Google Scholar 

  14. Dachman AH, Kuniyoshi JK, Boyle CM, Samara Y, Hoffmann KR, Rubin DT, Hanan I (1998) CT colonography with three-dimensional problem solving for detection of colonic polyps. Am J Roentgenol 171: 989–995

    CAS  Google Scholar 

  15. Fletcher JG, Johnson CD, MacCarty RL, Welch TJ, Reed JE, Hara AK (1999) CT colonography: potential pitfalls and problem-solving techniques. Am J Roentgenol 172: 1271–1278

    CAS  Google Scholar 

  16. Yoshida H, Masutani Y, MacEneaney P, Rubin D, Dachman AH (2002) Computerized detection of colonic polyps in CT colonography based on volumetric features: a pilot study. Radiology 222: 327–336

    Article  PubMed  Google Scholar 

  17. Li L, Lu H, Li X, Huang W, Tudorica A, Christodoulou C, Krupp L, Liang Z (2003) MRI volumetric analysis of multiple sclerosis: Methodology and validation. IEEE Trans Nucl Sci 50(5): 1686–1692

    Article  Google Scholar 

  18. Liang Z, Jaszczak R, Coleman E (1992) Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing. IEEE Trans Nucl Sci 39(4): 1126–1133

    Article  CAS  Google Scholar 

  19. Sanjay-Gopal S, Hebert T (1998) Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process 7(7): 1014–1028

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1): 45–57

    Article  PubMed  CAS  Google Scholar 

  21. Näppi J, Dachman AH, MacEneaney P et al (2002) Automated knowledge-guided segmentation of colonic walls for computerized detection of polyps in CT colonography. J Comput Assist Tomogr 26: 493–504

    Article  PubMed  Google Scholar 

  22. Summers R, Beaulieu C, Pusanik L, Malley J, Jeffrey R, Glazer D, Napel S (2000) Automated polyp detection at CT Colonography: feasibility study. Radiology 216(1): 284–290

    PubMed  CAS  Google Scholar 

  23. Summers R, Johnson C, Pusanik L, Malley J, Youssef A, Reed J (2001) Automated polyp detection at CT Colonography: feasibility assessment in a human population. Radiology 219(1): 51–59

    PubMed  CAS  Google Scholar 

  24. Yoshida H, Nappi J (2001) Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans Med Imaging 20(12): 1261–1274

    Article  PubMed  CAS  Google Scholar 

  25. Yoshida H, Masutani Y, Maceneaney P, Rubin D, Dachman A (2002) Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: Pilot study. Radiology 222(2): 327–336

    Article  PubMed  Google Scholar 

  26. Yoshida H, Nappi J, MacEneaney P, Rubin D, Dachman A (2002) Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics 22(4): 963–979

    PubMed  Google Scholar 

  27. Nappi J, Yoshida H (2002) Automated detection of polyps with CT Colonography: Evaluation of volumetric features for reduction of false-positive findings. Acad Radiol 9(4): 386–397

    Article  PubMed  Google Scholar 

  28. Nappi J, Frimmel H, Dachman A, Yoshida H (2004) Computerized detection of colorectal masses in CT colonography based on fuzzy merging and wall-thickening analysis. Med Physics 31(4): 860–872

    Article  Google Scholar 

  29. Paik D, Beaulieu C, Jeffrey R, Karadi C, Napel S (1999) Detection of polyps in CT Colonography: a comparison of a computer-aided detection algorithm to 3D visualization methods. Radiology 213(P): 197

    Google Scholar 

  30. Paik D, Beaulieu C, Jeffrey R, Yee J, Steinauer-Gebauer A, Napel S (2000) Computer aided detection of polyps in CT colonography: method and free-response ROC evaluation of performance. Radiology 217(P): 370

    Google Scholar 

  31. Paik D, Beaulieu C, Mani A, Prokesch R, Lee J, Napel S (2001) Evaluation of computer-aided detection in CT colonography: potential applicability to a screening population. Radiology 221(P): 332

    Google Scholar 

  32. Kiss G, Cleynenbreugel J, Thomeer M, Marchal G, Suetens P (2002) Computer aided diagnosis for virtual colonography by geometrical model fitting. In: Proceedings of seventh international workshop on vision, modeling, and visualization, Germany, pp 27–34

  33. Kiss G, Cleynenbreugel J, Thomeer M, Suetens P, Marchal G (2002) Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods. Eur Radiol 12(1): 77–81

    Article  PubMed  Google Scholar 

  34. Wijk C, Truyen R, Gelder RE, Vliet LJ, Vos FM (2004) On normalized convolution to measure curvature features for automatic polyp detection. In: MICCAI, LNCS 3216, pp 200–208

  35. Wang Z, Liang Z, Li X, Li L, Li B, Eremina D, Lu H (2006) An improved electronic colon cleansing method for detection of colonic polyps by virtual colonoscopy. IEEE Trans Biomed Eng 53(12): 1635–1646

    Article  PubMed  Google Scholar 

  36. Eremina D, Li X, Zhu W, Wang J, Liang Z (2006) Investigation on an EM framework for partial volume image segmentation. In: Proceedings of SPIE medical imaging, vol 6144, pp D1–D9

  37. Sethian JA (1999) Level set methods and fast marching methods evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, London

    Google Scholar 

  38. Liang Z, Wang S, Lu H, Wang J (2007) Model parameter estimation and tissue mixture segmentation by a MAP-EM algorithm. In: IEEE nuclear science symposium (NSS) and medical imaging conference (MIC), Hawaii

  39. Wang S, Lu H, Liang Z (2008) A theoretical solution to partial volume MAP-EM tissue mixture segmentation for CT/MRI imaging modalities. In: International workshop on combinatorial image analysis, Buffalo

  40. Wang Z, Liang Z, Li L, Li X, Anderson J, Harrington D (2005) Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy. Med Phys 32(12): 3602–3616

    Article  PubMed  Google Scholar 

  41. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn, (Hardcover). Prentice Hall, Englewood Cliffs

    Google Scholar 

  42. Monga O, Benayoun S (1992) Using partial derivatives of 3D images to extract typical surface features. In: Proceedings of the third annual conference of AI, simulation and planning in high autonomy systems, integrating perception, planning and action, pp 225-236

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhengrong Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhu, H., Lu, H. et al. Volume-based feature analysis of mucosa for automatic initial polyp detection in virtual colonoscopy. Int J CARS 3, 131–142 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: