Skip to main content
Log in

Postoperative control in deep brain stimulation of the subthalamic region: the contact membership concept

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Object

In deep brain stimulation, the anatomic positions of electrode contact centers are used as the basis for analysis. We propose a new semi-quantitative approach (contact membership concept) considering patient’s individual anatomy, contact size, and extent of involvement of STN and neighboring structures.

Materials and methods

In ten bilaterally operated and improved Parkinsonian patients, effective contact positions (contacts used for monopolar stimulation) were analyzed. The position of the contact center (classical binary approach: each center assigned, 1, or not, 0, to a given structure) and of the contact in its dimension (contact membership concept: membership degree, ordinal values from 0 to 1, assigned to each anatomic structure according to extent of involvement) were compared for the whole patient group and, individually, for each patient.

Results

The membership concept revealed that for 13 out of 20 contacts, more than one structure was involved, where the classical binary approach assigned only one structure. For both approaches lateral STN, zona incerta and H1 (Forel’s Field) were the main structures involved, but their frequencies of appearance differed.

Conclusion

The membership concept allows detailed analysis of the anatomic contact position. In the future this approach could assist in correlating anatomy and clinical results for all electrode contacts (effective ones and clinically less efficient ones).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamani C, Richter E, Schwalb JM and Lozano AM (2005). Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery 56(6): 1313–1321

    Article  PubMed  Google Scholar 

  2. Krack P, Batir A, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P and Blercom N (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20): 1925–1934

    Article  PubMed  CAS  Google Scholar 

  3. Krause M, Fogel W, Mayer P, Kloss M and Tronnier V (2004). Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci 219(1–2): 119–124

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR and Obeso JA (2004). Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75(10): 1382–1385

    Article  PubMed  CAS  Google Scholar 

  5. Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E and Gross C (2004). High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. FASEB J 18(3): 528–530

    PubMed  CAS  Google Scholar 

  6. Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Muller D, Volkmann J, Deuschl G and Mehdorn HM (2003). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74(8): 1036–1046

    Article  PubMed  CAS  Google Scholar 

  7. Henderson JM, Pell M, O’Sullivan DJ, McCusker EA, Fung VS, Hedges P and Halliday GM (2002). Postmortem analysis of bilateral subthalamic electrode implants in Parkinson’s disease. Mov Disord 17(1): 133–137

    Article  PubMed  Google Scholar 

  8. Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, Weinert D, Pfister G, Muller D, Mehdorn HM, Deuschl G and Volkmann J (2004). Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9): 1050–1054

    Article  PubMed  Google Scholar 

  9. Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE and Lozano AM (2002). Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97(5): 1152–1166

    PubMed  Google Scholar 

  10. Zincone A, Landi A, Piolti R, Appollonio I, Mariani CB, Pezzoli G, Gaini SM and Frattola L (2001). Physiologic study of the subthalamic volume. Neurol Sci 22(1): 111–112

    Article  PubMed  CAS  Google Scholar 

  11. Duffner F, Schiffbauer H, Breit S, Friese S and Freudenstein D (2002). Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir (Wien) 144(5): 445–451

    Article  CAS  Google Scholar 

  12. Ferroli P, Franzini A, Marras C, Maccagnano E, D’Incerti L and Broggi G (2004). A simple method to assess accuracy of deep brain stimulation electrode placement: pre-operative stereotactic CT + postoperative MR image fusion. Stereotact Funct Neurosurg 82(1): 14–19

    Article  PubMed  Google Scholar 

  13. Lemaire JJ, Coste J, Ouchchane L, Hemm S, Derost P, Ulla M, Siadoux S, Gabrillargues J, Durif F and Chazal J (2007). MRI anatomical mapping and direct stereotactic targeting in the Subthalamic region: relationsships between biological and anatomical data in 15 Parkinsonians. Int J CARS 2: 75–85

    Article  Google Scholar 

  14. Caire F, Derost P, Coste J, Bonny JM, Durif F, Frenoux E, Villeger A and Lemaire JJ (2006). Subthalamic deep brain stimulation for severe idiopathic Parkinson’s disease. Location study of the effective contacts. Neurochirurgie 52(1): 15–25

    PubMed  CAS  Google Scholar 

  15. Nowinski WL, Belov D, Pollak P and Benabid AL (2004). A probabilistic functional atlas of the human subthalamic nucleus. Neuroinformatics 2(4): 381–398

    Article  PubMed  Google Scholar 

  16. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A and Marks WJ Jr (2002). Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97(2): 370–387

    PubMed  Google Scholar 

  17. Vayssière N, Vander Gaag N, Cif L, Hemm S, Verdier R, Frerebeau P and Coubes P (2004). Deep brain stimulation for dystonia confirms a somatotopic organization in the Globus Pallidus Internus. J Neurosurg 101: 181–188

    PubMed  Google Scholar 

  18. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ and Sturm V (2002). Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96(2): 269–279

    PubMed  Google Scholar 

  19. Zonenshayn M, Sterio D, Kelly PJ, Rezai AR, Beric A (2004) Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson’s disease. Surg Neurol 62(3):216–225, discussion 225–226

    Google Scholar 

  20. Fahn S and Elton RL (1987). Unified Parkinson’s disease rating scale. In: Fahn, S, Marsden, CD and Goldstein, M (eds) Recent developments in Parkinson’s disease, pp 153–163. Macmillian, New York

    Google Scholar 

  21. Magnotta VA, Gold S, Andreasen NC, Ehrhardt JC and Yuh WT (2000). Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. Neuroimage 11(4): 341–346

    Article  PubMed  CAS  Google Scholar 

  22. Derost P, Ouchchane L, Morand D, Ulla M, Llorca P, Barget M, Debilly B, Lemaire JJ and Durif F (2007). Is subthalamic nucleus deep brain stimulation (DBS-STN) appropriate to manage severe Parkinson disease in an elderly population. Neurology 68: 1345–1355

    Article  PubMed  Google Scholar 

  23. Lemaire JJ, Caire F, Bony JM, Kemeny JL, Villéger A and Chazal J (2004). Contribution of 4.7 tesla MRI in the analysis of the MRI anatomy of the human subthalamic area. Acta Neurochir (Wien) 146(8): 906–907

    Google Scholar 

  24. Maintz JB and Viergever MA (1998). A survey of medical image registration. Med Image Anal 2(1): 1–36

    Article  PubMed  CAS  Google Scholar 

  25. Viola P, Atsumi H, Nakajima S, Kikinis R and Wells WM lll(1996). Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1): 35–51

    Article  PubMed  Google Scholar 

  26. Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P and Meuli R (2004). Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien) 146(2): 161–164

    Article  CAS  Google Scholar 

  27. Zadeh LA (1965). Fuzzy sets. Inf Control 8: 338–353

    Article  Google Scholar 

  28. Zadeh LA (1975). Fuzzy logic and approximate reasoning (in memory of Gregore Moisil). Synthèse 30: 407–428

    Article  Google Scholar 

  29. Ondo WG and Bronte-Stewart H (2005). The North American survey of placement and adjustment strategies for deep brain stimulation. Stereotact Funct Neurosurg 83(4): 142–147

    Article  PubMed  Google Scholar 

  30. Elias WJ, Fu KM and Frysinger RC (2007). Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107(5): 983–988

    Article  PubMed  Google Scholar 

  31. Miyagi Y, Shima F and Sasaki T (2007). Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107(5): 989–997

    Article  PubMed  Google Scholar 

  32. Butson CR, Cooper SE, Henderson JM and McIntyre CC (2007). Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2): 661–670

    Article  PubMed  Google Scholar 

  33. Hamel W, Schrader B, Weinert D, Herzog J, Volkmann J, Deuschl G, Muller D and Mehdorn HM (2002). MRI- and skull X-ray-based approaches to evaluate the position of deep brain stimulation electrode contacts—a technical note. Zentralbl Neurochir 63(2): 65–69

    Article  PubMed  CAS  Google Scholar 

  34. Schaltenbrand G and Bailey P (1959). Introduction to stereotaxis with an atlas of the human brain. Thieme Verlag, New York, Stuttgart

    Google Scholar 

  35. Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems Part II: correction using a 3D phantom. Magn Reson Imaging 22(9): 1223–1232

    Article  PubMed  Google Scholar 

  36. Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems Part I: evaluation using a 3D phantom. Magn Reson Imaging 22(9): 1211–1221

    Article  PubMed  Google Scholar 

  37. Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L, Frerebeau P and Coubes P (2000). Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93(5): 784–790

    PubMed  CAS  Google Scholar 

  38. Lemaire JJ, Coste J, Ouchchane L, Caire F, Nuti C, Derost P, Cristini V, Gabrillargues J, Hemm S, Durif F and Chazal J (2007). Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. Neuroimage 37(Suppl 1): S109–S115

    Article  PubMed  Google Scholar 

  39. Kotter R and Wanke E (2005). Mapping brains without coordinates. Philos Trans R Soc Lond B Biol Sci 360(1456): 751–766

    Article  PubMed  Google Scholar 

  40. Vayssiere N, Hemm S, Cif L, Picot MC, Diakonova N, El Fertit H, Frerebeau P and Coubes P (2002). Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg 96(4): 673–679

    PubMed  Google Scholar 

  41. Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A and Lopiano L (2002). Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 72(1): 53–58

    Article  PubMed  CAS  Google Scholar 

  42. Parent A and Williams W (1996). Carpenter’s human neuroanatomy. A Waverly Company, Baltimore

    Google Scholar 

  43. Hemm S, Mennessier G, Vayssiere N, Cif L, El Fertit H and Coubes P (2005). Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J Neurosurg 103(6): 949–955

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Lemaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemm, S., Caire, F., Coste, J. et al. Postoperative control in deep brain stimulation of the subthalamic region: the contact membership concept. Int J CARS 3, 69–77 (2008). https://doi.org/10.1007/s11548-008-0152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0152-6

Keywords

Navigation