Skip to main content

Advertisement

Log in

MRI anatomical mapping and direct stereotactic targeting in the subthalamic region: functional and anatomical correspondence in Parkinson’s disease

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Object Relationships between clinical effects, anatomy, and electrophysiology are not fully understood in DBS of the subthalamic region in Parkinson’s disease. We proposed an anatomic study based on direct image-guided stereotactic surgery with a multiple source data analysis.

Materials and Methods A manual anatomic mapping was realized on coronal 1.5-Tesla MRI of 15 patients. Biological data were collected under local anesthesia: the spontaneous neuron activities and the clinical efficiency and the appearance of adverse effects. They were related to relevant current values (mA), the benefit threshold (bt, minimal current leading an clear efficiency), the adverse effect threshold (at, minimal current leading an adverse effect) and the stimulation margin (sm =  at − bt); they were matched with anatomy.

Results We found consistent relationships between anatomy and biological data. The optimal stimulation parameters (low bt + high sm) were noted in the dorsolateral STN. The highest spontaneous neuron activity was found in the ventromedial STN. Dorsolateral (sensorimotor) STN seems the main DBS effector. The highest spontaneous neuron activity seems related to the anterior (rostral) ventromedial (limbic) STN.

Conclusion 1.5 Tesla images provide sufficiently detailed subthalamic anatomy for image-guided stereotactic surgery and may aid in understanding DBS mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erola T, Karinen P, Heikkinen E, Tuominen J, Haapaniemi T, Koivukangas J and Myllyla V (2005). Bilateral subthalamic nucleus stimulation improves health-related quality of life in parkinsonian patients. Parkinsonism Relat Disord 11(2): 89–94

    Article  PubMed  Google Scholar 

  2. Hamani C, Richter E, Schwalb JM and Lozano AM (2005). Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurg 56(6): 1313–1321

    Article  Google Scholar 

  3. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL and Pollak P (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20): 1925–1934

    Article  PubMed  CAS  Google Scholar 

  4. Krause M, Fogel W, Mayer P, Kloss M and Tronnier V (2004). Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci 219(1–2): 119–124

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR and Obeso JA (2004). Efficacy of deep brain stimulation of the subthalamic nucleus in parkinson’s disease 4 years after surgery: Double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75(10): 1382–1385

    Article  PubMed  CAS  Google Scholar 

  6. Walter BL and Vitek JL (2004). Surgical treatment for Parkinson’s disease. Lancet Neurol 3(12): 719–728

    Article  PubMed  Google Scholar 

  7. Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E and Gross C (2004). High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. Faseb J 18(3): 528–530

    PubMed  CAS  Google Scholar 

  8. Breit S, Schulz JB and Benabid AL (2004). Deep brain stimulation. Cell Tissue Res 318(1): 275–288

    Article  PubMed  Google Scholar 

  9. Filali M, Hutchison WD, Palter VN, Lozano AM and Dostrovsky JO (2004). Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156(3): 274–281

    Article  PubMed  Google Scholar 

  10. Garcia L, Audin J, D’Alessandro G, Bioulac B and Hammond C (2003). Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23(25): 8743–8751

    PubMed  CAS  Google Scholar 

  11. Hashimoto T, Elder CM, Okun MS, Patrick SK and Vitek JL (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5): 1916–1923

    PubMed  CAS  Google Scholar 

  12. MacKinnon CD, Webb RM, Silberstein P, Tisch S, Asselman P, Limousin P and Rothwell JC (2005). Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease. Eur J Neurosci 21(5): 1394–1402

    Article  PubMed  Google Scholar 

  13. Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A and Boraud T (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128(Pt 10): 2372–2382

    Article  PubMed  Google Scholar 

  14. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y and Pidoux B (2004). Effects of high-frequency stimulation on subthalamic neuronal activity in Parkinsonian patients. Arch Neurol 61(1): 89–96

    Article  PubMed  Google Scholar 

  15. Counelis GJ, Simuni T, Forman MS, Jaggi JL, Trojanowski JQ and Baltuch GH (2003). Bilateral subthalamic nucleus deep brain stimulation for advanced pd: Correlation of intraoperative MER and postoperative MRI with neuropathological findings. Mov Disord 18(9): 1062–1065

    Article  PubMed  Google Scholar 

  16. Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Muller D, Volkmann J, Deuschl G and Mehdorn HM (2003). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74(8): 1036–1046

    Article  PubMed  CAS  Google Scholar 

  17. Henderson JM, Pell M, O’Sullivan DJ, McCusker EA, Fung VS, Hedges P and Halliday GM (2002). Postmortem analysis of bilateral subthalamic electrode implants in Parkinson’s disease. Mov Disord 17(1): 133–137

    Article  PubMed  Google Scholar 

  18. Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, Weinert D, Pfister G, Muller D, Mehdorn HM, Deuschl G and Volkmann J (2004). Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9): 1050–1054

    Article  PubMed  Google Scholar 

  19. Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE and Lozano AM (2002). Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on Magnetic Resonance Imaging. J Neurosurg 97(5): 1152–1166

    PubMed  Google Scholar 

  20. Zincone A, Landi A, Piolti R, Appollonio I, Mariani CB, Pezzoli G, Gaini SM and Frattola L (2001). Physiologic study of the subthalamic volume. Neurol Sci 22(1): 111–112

    Article  PubMed  CAS  Google Scholar 

  21. Derost P, Ouchchane L, Morand D, Ulla M, Lbrca PM, Barzet M, Debilly B, Lemaire JJ and Durif F (2007). Is DBS-STN appropriate to manage severe Parkinson’s disease in an elderly population?. Neurology 68: 1345–1355

    Article  PubMed  Google Scholar 

  22. Ulla M, Thobois S, Lemaire JJ, Schmitt A, Derost P, Broussolle E, Llorca PM and Durif F (2006). Manic behaviour induced by deep-brain stimulation in Parkinson’s disease: Evidence of substantia nigra implication?. J Neurol Neurosurg Psychiatry 77(12): 1363–1366

    Article  PubMed  CAS  Google Scholar 

  23. Magnotta VA, Gold S, Andreasen NC, Ehrhardt JC and Yuh WT (2000). Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. Neuroimage 11(4): 341–346

    Article  PubMed  CAS  Google Scholar 

  24. Lemaire JJ, Caire F, Bony JM, Kemeny JL, Villéger A and Chazal J (2004). Contribution of 4.7 Tesla MRI in the analysis of the MRI anatomy of the human subthalamic area. Acta Neurochir (Wien) 146(8): 906–907

    Google Scholar 

  25. Parent A (1996) Basal ganglia: In: Parent A, Carpenter’s human neuroanatomy. Williams and Wilkins, Baltimore, pp 838–843

  26. Richter EO, Hoque T, Halliday W, Lozano AM and Saint-Cyr JA (2004). Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson’s disease. J Neurosurg 100(3): 541–546

    PubMed  Google Scholar 

  27. Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems part ii: Correction using a 3d phantom. Magn Reson Imaging 22(9): 1223–1232

    Article  PubMed  Google Scholar 

  28. Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems part i: Evaluation using a 3d phantom. Magn Reson Imaging 22(9): 1211–1221

    Article  PubMed  Google Scholar 

  29. Ferroli P, Franzini A, Marras C, Maccagnano E, D’Incerti L and Broggi G (2004). A simple method to assess accuracy of deep brain stimulation electrode placement: pre-operative stereotactic CT + postoperative MR image fusion. Stereotact Funct Neurosurg 82(1): 14–19

    Article  PubMed  Google Scholar 

  30. Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P and Meuli R (2004). Magnetic resonance artifact induced by the electrode Activa 3389: An in vitro and in vivo study. Acta Neurochir (Wien) 146(2): 161–164

    Article  CAS  Google Scholar 

  31. Mitrofanis J (2005). Some certainty for the “Zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130(1): 1–15

    Article  PubMed  CAS  Google Scholar 

  32. Parent M and Parent A (2004). The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 10(4): 203–211

    Article  PubMed  Google Scholar 

  33. Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA and Lozano AM (2005). Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63(3): 249–253

    Article  PubMed  Google Scholar 

  34. Pralong E, Villemure JG, Bloch J, Pollo C, Daniels RT, Ghika J, Vingerhoets F, Tetreault MH and Debatisse D (2004). Quality index for the quantification of the information recorded along standard microelectrode tracks to the subthalamic nucleus in parkinsonian patients. Neurophysiol Clin 34(5): 209–215

    Article  PubMed  Google Scholar 

  35. Baker KB, Boulis NM, Rezai AL and Montgomery EB Jr (2004). Target selection using microeletrode recording. In: Israel, Z and Burchiel, KJ (eds) Microelectrode recording in movement disorder surgery, pp 138–151. Thieme, New York

    Google Scholar 

  36. Abosch A, Hutchison WD, Saint-Cyr JA, Dostrovsky JO and Lozano AM (2002). Movement-related neurons of the subthalamic nucleus in patients with Parkinson’s disease. J Neurosurg 97(5): 1167–1172

    Article  PubMed  Google Scholar 

  37. Theodosopoulos PV, Marks WJ Jr., Christine C and Starr PA (2003). Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Mov Disord 18(7): 791–798

    Article  PubMed  Google Scholar 

  38. Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong MR and Obeso JA (2001). The subthalamic nucleus in Parkinson’s disease: Somatotopic organization and physiological characteristics. Brain 124(Pt 9): 1777–1790

    Article  PubMed  CAS  Google Scholar 

  39. Patel NK, Plaha P, O’Sullivan K, McCarter R, Heywood P and Gill SS (2003). MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 74(12): 1631–1637

    Article  PubMed  CAS  Google Scholar 

  40. Schaltenbrand G and Bailey P (1959). Introduction to stereotaxis with an atlas of the human brain. Thieme Verlag, New York

    Google Scholar 

  41. Talairach J (1957). Atlas d’anatomie stéréotaxique. Repérage radiologique indirect des noyaux gris centraux des régions mésencéphalo-sous-optiques et hypothalamiques de l’homme. Masson & Cie, Paris

    Google Scholar 

  42. Abrahamson EE and Moore RY (2001). The posterior hypothalamic area: Chemoarchitecture and afferent connections. Brain Res 889(1–2): 1–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Lemaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaire, JJ., Coste, J., Ouchchane, L. et al. MRI anatomical mapping and direct stereotactic targeting in the subthalamic region: functional and anatomical correspondence in Parkinson’s disease. Int J CARS 2, 75–85 (2007). https://doi.org/10.1007/s11548-007-0124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-007-0124-2

Keywords

Navigation