Skip to main content
Log in

Multiparametric cardiac magnetic resonance in patients with thalassemia intermedia: new insights from the E-MIOT network

  • Cardiac Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

In a relatively large cohort of thalassemia intermedia (TI) patients, we systematically investigated myocardial iron overload (MIO), function, and replacement fibrosis using cardiac magnetic resonance (CMR), we assessed the clinical determinants of global heart T2* values, and we explored the association between multiparametric CMR findings and cardiac complications.

Materials and methods

We considered 254 beta-TI patients (43.14 ± 13.69 years, 138 females) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia project. MIO was quantified by T2* technique and biventricular function and atrial areas by cine images. Macroscopic myocardial fibrosis was detected by late gadolinium enhancement technique.

Results

Compared to never/sporadically transfused patients, regularly transfused (RT)-TI patients exhibited significantly lower global heart T2* values, biventricular end-diastolic volume indexes, left ventricular mass index, and cardiac index. In RT-TI patients, age and serum ferritin levels were the strongest predictors of global heart T2* values. Independently from the transfusional state, cardiac T2* values were not associated with biventricular function.

Of the 103 (40.6%) patients in whom the contrast medium was administrated, 27 (26.2%) had replacement myocardial fibrosis. Age, sex distribution, cardiac iron, and biventricular function parameters were comparable between patients without and without replacement myocardial fibrosis. Twenty-five (9.8%) patients had a history of cardiac complications (heart failure and arrhythmias). Increased age and replacement myocardial fibrosis emerged as significant risk markers for cardiac complications.

Conclusions

In TI, regular transfusions are associated with less pronounced cardiac remodeling but increase the risk of MIO. Replacement myocardial fibrosis is a frequent finding associated with cardiac complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weatherall DJ (1997) The thalassaemias. Bmj 314:1675–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sturgeon P, Itano HA, Bergren WR (1955) Genetic and biochemical studies of intermediate types of Cooley’s anaemia. Br J Haematol 1:264–277

    Article  CAS  PubMed  Google Scholar 

  3. Taher AT, Musallam KM, El-Beshlawy A et al (2010) Age-related complications in treatment-naive patients with thalassaemia intermedia. Br J Haematol 150:486–489

    Article  PubMed  Google Scholar 

  4. Taher AT, Musallam KM, Karimi M et al (2010) Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the optimal care study. Blood 115:1886–1892

    Article  CAS  PubMed  Google Scholar 

  5. Haddad A, Tyan P, Radwan A, Mallat N, Taher A (2014) Beta-thalassemia intermedia: a bird’s-eye view. Turk J Haematol 31:5–16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ricchi P, Meloni A, Pistoia L et al (2020) Longitudinal follow-up of patients with thalassaemia intermedia who started transfusion therapy in adulthood: a cohort study. Br J Haematol 191:107–114

    Article  CAS  PubMed  Google Scholar 

  7. Ginzburg Y, Rivella S (2011) beta-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 118:4321–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Origa R, Galanello R, Ganz T et al (2007) Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica 92:583–588

    Article  CAS  PubMed  Google Scholar 

  9. Pennell DJ, Udelson JE, Arai AE et al (2013) Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American Heart Association. Circulation 128:281–308

    Article  CAS  PubMed  Google Scholar 

  10. Origa R, Barella S, Argiolas GM, Bina P, Agus A, Galanello R (2008) No evidence of cardiac iron in 20 never- or minimally-transfused patients with thalassemia intermedia. Haematologica 93:1095–1096

    Article  PubMed  Google Scholar 

  11. Roghi A, Cappellini MD, Wood JC et al (2010) Absence of cardiac siderosis despite hepatic iron overload in Italian patients with thalassemia intermedia: an MRI T2* study. Ann Hematol 89:585–589

    Article  CAS  PubMed  Google Scholar 

  12. Liguori C, Pitocco F, Di Giampietro I et al (2015) Magnetic resonance comparison of left-right heart volumetric and functional parameters in thalassemia major and thalassemia intermedia patients. Biomed Res Int 2015:857642

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taher AT, Musallam KM, Wood JC, Cappellini MD (2010) Magnetic resonance evaluation of hepatic and myocardial iron deposition in transfusion-independent thalassemia intermedia compared to regularly transfused thalassemia major patients. Am J Hematol 85:288–290

    Article  CAS  PubMed  Google Scholar 

  14. Meloni A, Pistoia L, Gamberini MR et al (2021) The link of pancreatic iron with glucose metabolism and cardiac iron in thalassemia intermedia: a large multicenter observational study. J Clin Med 10:5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricchi P, Meloni A, Pistoia L et al (2018) The effect of desferrioxamine chelation versus no therapy in patients with non-transfusion-dependent thalassaemia: a multicenter prospective comparison from the MIOT network. Ann Hematol 97:1925–1932

    Article  CAS  PubMed  Google Scholar 

  16. Aessopos A, Berdoukas V (2009) Cardiac function and iron chelation in thalassemia major and intermedia: a review of the underlying pathophysiology and approach to chelation management. Mediterr J Hematol Infect Dis 1:e2009002

    PubMed  PubMed Central  Google Scholar 

  17. Marsella M, Borgna-Pignatti C, Meloni A et al (2011) Cardiac iron and cardiac disease in males and females with transfusion-dependent thalassemia major: a T2* magnetic resonance imaging study. Haematologica 96:515–520

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aquaro GD, Camastra G, Monti L et al (2016) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging 45:1055–1067

    Article  PubMed  Google Scholar 

  19. Pepe A, Positano V, Capra M et al (2009) Myocardial scarring by delayed enhancement cardiovascular magnetic resonance in thalassaemia major. Heart 95:1688–1693

    Article  CAS  PubMed  Google Scholar 

  20. Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  21. Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887

    Article  PubMed  Google Scholar 

  22. Pepe A, Meloni A, Rossi G et al (2018) Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: a prospective multicentre study by a multi-parametric approach. Eur Heart J Cardiovasc Imaging 19:299–309

    Article  PubMed  Google Scholar 

  23. Kirk P, Roughton M, Porter JB et al (2009) Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 120:1961–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pepe A, Pistoia L, Gamberini MR et al (2022) National networking in rare diseases and reduction of cardiac burden in thalassemia major. Eur Heart J 43:2482–2492

    Article  PubMed  Google Scholar 

  25. Ramazzotti A, Pepe A, Positano V et al (2009) Multicenter validation of the magnetic resonance t2* technique for segmental and global quantification of myocardial iron. J Magn Reson Imaging 30:62–68

    Article  PubMed  Google Scholar 

  26. Meloni A, Restaino G, Borsellino Z et al (2014) Different patterns of myocardial iron distribution by whole-heart T2* magnetic resonance as risk markers for heart complications in thalassemia major. Int J Cardiol 177:1012–1019

    Article  PubMed  Google Scholar 

  27. Meloni A, Luciani A, Positano V et al (2011) Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J Magn Reson Imaging 33:348–355

    Article  PubMed  Google Scholar 

  28. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  29. Wood JC, Enriquez C, Ghugre N et al (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106:1460–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meloni A, Rienhoff HY Jr, Jones A, Pepe A, Lombardi M, Wood JC (2013) The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br J Haematol 161:888–891

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meloni A, Righi R, Missere M et al (2021) Biventricular reference values by body surface area, age, and gender in a large cohort of well-treated thalassemia major patients without heart damage using a multiparametric CMR approach. J Magn Reson Imaging 53:61–70

    Article  PubMed  Google Scholar 

  32. Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    Article  CAS  PubMed  Google Scholar 

  33. Positano V, Pepe A, Santarelli MF et al (2007) Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed 20:578–590

    Article  PubMed  Google Scholar 

  34. Carpenter JP, He T, Kirk P et al (2011) On T2* magnetic resonance and cardiac iron. Circulation 123:1519–1528

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meloni A, Martini N, Positano V et al (2021) Myocardial iron overload by cardiovascular magnetic resonance native segmental T1 mapping: a sensitive approach that correlates with cardiac complications. J Cardiovasc Magn Reson 23:70

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cogliandro T, Derchi G, Mancuso L et al (2008) Guideline recommendations for heart complications in thalassemia major. J Cardiovasc Med (Hagerstown) 9:515–525

    Article  PubMed  Google Scholar 

  37. Jessup M, Abraham WT, Casey DE et al (2009) 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American college of cardiology Foundation/American heart association task force on practice guidelines: developed in collaboration with the international society for heart and lung transplantation. Circulation 119:1977–2016

    Article  PubMed  Google Scholar 

  38. Buxton AE, Calkins H, Callans DJ et al (2006) ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association task force on clinical data standards (ACC/AHA/HRS writing committee to develop data standards on electrophysiology). Circulation 114:2534–2570

    Article  PubMed  Google Scholar 

  39. Meloni A, Maggio A, Positano V et al (2020) CMR for myocardial iron overload quantification: calibration curve from the MIOT network. Eur Radiol 29:2246–2252

    Article  Google Scholar 

  40. Ricchi P, Meloni A, Spasiano A et al (2015) Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients. Am J Hematol 90:1008–1012

    Article  CAS  PubMed  Google Scholar 

  41. Garbowski MW, Evans P, Vlachodimitropoulou E, Hider R, Porter JB (2017) Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin. Haematologica 102:1640–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwiatkowski JL (2011) Real-world use of iron chelators. Hematol Am Soc Hematol Educ Program 2011(1):451–458

    Article  Google Scholar 

  43. Noetzli LJ, Carson SM, Nord AS, Coates TD, Wood JC (2008) Longitudinal analysis of heart and liver iron in thalassemia major. Blood 112:2973–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aquaro GD, Camastra G, Monti L et al (2017) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging 45:1055–1067

    Article  PubMed  Google Scholar 

  45. Meloni A, Martini N, Positano V et al (2021) Myocardial T1 values at 1.5 T: normal values for general electric scanners and sex-related differences. J Magn Reson Imaging 54:1486–1500

    Article  PubMed  Google Scholar 

  46. Varat MA, Adolph RJ, Fowler NO (1972) Cardiovascular effects of anemia. Am Heart J 83:415–426

    Article  CAS  PubMed  Google Scholar 

  47. Lindsay J Jr, Meshel JC, Patterson RH (1974) The cardiovascular manifestations of sickle cell disease. Arch Intern Med 133:643–651

    Article  PubMed  Google Scholar 

  48. Kremastinos DT, Tsiapras DP, Tsetsos GA, Rentoukas EI, Vretou HP, Toutouzas PK (1993) Left ventricular diastolic doppler characteristics in beta-thalassemia major. Circulation 88:1127–1135

    Article  CAS  PubMed  Google Scholar 

  49. Musallam KM, Cappellini MD, Daar S et al (2014) Serum ferritin level and morbidity risk in transfusion-independent patients with beta-thalassemia intermedia: the ORIENT study. Haematologica 99:e218-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Detterich J, Noetzli L, Dorey F et al (2012) Electrocardiographic consequences of cardiac iron overload in thalassemia major. Am J Hematol 87:139–144

    Article  CAS  PubMed  Google Scholar 

  51. Meloni A, Pepe A, Positano V et al (2009) Influence of myocardial fibrosis and blood oxygenation on heart T2* values in thalassemia patients. J Magn Reson Imaging 29:832–837

    Article  PubMed  Google Scholar 

  52. Meloni A, Favilli B, Positano V et al (2009) Safety of cardiovascular magnetic resonance gadolinium chelates contrast agents in patients with hemoglobinopaties. Haematologica 94:1625–1627

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bing R, Dweck MR (2019) Myocardial fibrosis: why image, how to image and clinical implications. Heart 105:1832–1840

    Article  CAS  PubMed  Google Scholar 

  54. Meloni A, Detterich J, Pepe A, Harmatz P, Coates TD, Wood JC (2015) Pulmonary hypertension in well-transfused thalassemia major patients. Blood Cells Mol Dis 54:189–194

    Article  PubMed  Google Scholar 

  55. Kraigher-Krainer E, Shah AM, Gupta DK et al (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63:447–456

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the colleagues involved in the E-MIOT project (https://emiot.ftgm.it/). We thank all patients for their cooperation.

This work is generated within the European Reference Network on Rare Hematological Diseases (ERN-EuroBloodNet).

Funding

The E-MIOT project received “no-profit support” from industrial sponsorships (Chiesi Farmaceutici S.p.A. and Bayer). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AM designed the study, analyzed the data, and drafted the initial manuscript. LP was responsible for data collection. PR, FL, VC, FS, LC, MA, VR, RR, PF, SR, and LB collected the data. VP developed the software for image analysis. FC supervised the study and is the guarantor of this work. All authors assisted with interpretation, commented on drafts of the manuscript, and approved the final version.

Corresponding author

Correspondence to Filippo Cademartiri.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of all MRI centers involved in the E-MIOT project.

Consent to participate

Informed consent was obtained from all patients included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, A., Pistoia, L., Ricchi, P. et al. Multiparametric cardiac magnetic resonance in patients with thalassemia intermedia: new insights from the E-MIOT network. Radiol med (2024). https://doi.org/10.1007/s11547-024-01821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11547-024-01821-y

Keywords

Navigation