Skip to main content

Advertisement

Log in

Accuracy of artificial intelligence for the detection of intracranial hemorrhage and chronic cerebral microbleeds: a systematic review and pooled analysis

  • Computed Tomography
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Background

Artificial intelligence (AI)-driven software has been developed and become commercially available within the past few years for the detection of intracranial hemorrhage (ICH) and chronic cerebral microbleeds (CMBs). However, there is currently no systematic review that summarizes all of these tools or provides pooled estimates of their performance.

Methods

In this PROSPERO-registered, PRISMA compliant systematic review, we sought to compile and review all MEDLINE and EMBASE published studies that have developed and/or tested AI algorithms for ICH detection on non-contrast CT scans (NCCTs) or MRI scans and CMBs detection on MRI scans.

Results

In total, 40 studies described AI algorithms for ICH detection in NCCTs/MRIs and 19 for CMBs detection in MRIs. The overall sensitivity, specificity, and accuracy were 92.06%, 93.54%, and 93.46%, respectively, for ICH detection and 91.6%, 93.9%, and 92.7% for CMBs detection. Some of the challenges encountered in the development of these algorithms include the laborious work of creating large, labeled and balanced datasets, the volumetric nature of the imaging examinations, the fine tuning of the algorithms, and the reduction in false positives.

Conclusions

Numerous AI-driven software tools have been developed over the last decade. On average, they are characterized by high performance and expert-level accuracy for the diagnosis of ICH and CMBs. As a result, implementing these tools in clinical practice may improve workflow and act as a failsafe for the detection of such lesions.

Registration-URL

https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Submitted as supplemental material; Less lengthier tables are included in the manuscript.

Abbreviations

AI:

Artificial intelligence

ICH:

Intracranial hemorrhage

NCCT:

Non-contrast CT scan

IPH:

Intraparenchymal hemorrhage

IVH:

Intraventricular hemorrhage

SAH:

Subarachnoid hemorrhage

EDH:

Epidural hematoma

SDH:

Subdural hematoma

CMBs:

Chronic microbleeds

SN:

Sensitivity

SP:

Specificity

PPV:

Positive predictive value

NVP:

Negative predicted value

AUC:

Area under the curve

CNN:

Convolutional neural network

RNN:

Recurrent neural networks

ANN:

Artificial neural networks

2D:

2-Dimensional

3D:

3-Dimensional

References

  1. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, Moore GJ (2018) Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med 4(1):9. https://doi.org/10.1038/s41746-017-0015-z (PMID: 31304294; PMCID: PMC6550144)

    Article  Google Scholar 

  2. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396. https://doi.org/10.1016/S0140-6736(18)31645-3 (Epub 2018 Oct 11 PMID: 30318264)

    Article  PubMed  Google Scholar 

  3. Dawud AM, Yurtkan K, Oztoprak H (2019) Application of deep learning in neuroradiology: brain haemorrhage classification using transfer learning. Comput Intell Neurosci 3(2019):4629859. https://doi.org/10.1155/2019/4629859 (Erratum in: Comput Intell Neurosci. 2020 Aug 28; 2020: 4705838. PMID: 31281335; PMCID: PMC6589279)

    Article  Google Scholar 

  4. Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286(3):800–809. https://doi.org/10.1148/radiol.2017171920

    Article  PubMed  Google Scholar 

  5. Kaka H, Zhang E, Khan N (2020) Artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Can Assoc Radiol J. https://doi.org/10.1177/0846537120954293 (Epub ahead of print. PMID: 32946272)

    Article  PubMed  Google Scholar 

  6. Gupta R, Krishnam SP, Schaefer PW, Lev MH, Gilberto GR (2020) An east coast perspective on artificial intelligence and machine learning: part 1: hemorrhagic stroke imaging and triage. Neuroimaging Clin N Am 30(4):459–466. https://doi.org/10.1016/j.nic.2020.07.005 (Epub 2020 Sep 17. PMID: 33038996)

    Article  PubMed  Google Scholar 

  7. Yeo M, Tahayori B, Kok HK et al (2021) Review of deep learning algorithms for the automatic detection of intracranial hemorrhages on computed tomography head imaging. J NeuroInterventional Surg 13(4):369–378. https://doi.org/10.1136/neurintsurg-2020-017099

    Article  Google Scholar 

  8. Zhu G, Jiang B, Chen H et al (2020) Artificial intelligence and stroke imaging: a west coast perspective. Neuroimaging Clin N Am 30(4):479–492. https://doi.org/10.1016/j.nic.2020.07.001

    Article  PubMed  Google Scholar 

  9. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol 134:178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

    Article  PubMed  Google Scholar 

  10. Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsoukas S, Scaggiante J, Kellner C (2021) Artificial intelligence algorithms for identification of intracranial hemorrhagein non-contrast CT and MRI scans: a systematic review. PROSPERO 2021 CRD42021246848. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021246848

  12. Sinha M, Kennedy CS, Ramundo ML (2001) Artificial neural network predicts CT scan abnormalities in pediatric patients with closed head injury. J Trauma 50(2):308–312. https://doi.org/10.1097/00005373-200102000-00018 (PMID: 11242297)

    Article  CAS  PubMed  Google Scholar 

  13. Jnawali K, Arbabshirani M, Rao N, A Patel A (2018) Deep 3D convolution neural network for CT brain hemorrhage classification. In: Proceedings medical imaging 2018: computer-aided diagnosis, vol 10575, 105751C. https://doi.org/10.1117/12.2293725

  14. Ye H, Gao F, Yin Y, Guo D, Zhao P, Lu Y, Wang X, Bai J, Cao K, Song Q et al (2019) Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 29(11):6191–6201. https://doi.org/10.1007/s00330-019-06163-2 (Epub 2019 Apr 30. PMID: 31041565; PMCID: PMC6795911)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abstract: Grewal M, Srivastava MM, Kumar P, Varadarajan S (2018) RADnet: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. In: Proceedings of the 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018, pp 281–284

  16. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, Chen J, Abcede H, Shafie M, Sugrue L et al (2018) Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. AJNR Am J Neuroradiol 39(9):1609–1616. https://doi.org/10.3174/ajnr.A5742 (Epub 2018 Jul 26. PMID: 30049723; PMCID: PMC6128745)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heit JJ, Coelho H, Lima FO et al (2021) Automated cerebral hemorrhage detection using RAPID. AJNR Am J Neuroradiol 42(2):273–278

    Article  CAS  Google Scholar 

  18. Abstract: Helwan A, El-Fakhri G, Sasani H et al (2018) Deep networks in identifying CT brain hemorrhage. IFS 35:2215–2228

  19. Abstract: Ma SJ, Yu S, Liebeskind DS, Yan L, Wang DJ, Scalzo F (2018) Abstract WP60: Kernel spectral regression and neural networks enable regional detection of hemorrhagic transformation on multi-modal MRI for acute ischemic stroke. Stroke 49(Suppl_1). https://doi.org/10.1161/str.49.suppl_1.wp60

  20. Chen Y, Villanueva-Meyer JE, Morrison MA, Lupo JM (2019) Toward automatic detection of radiation-induced cerebral microbleeds using a 3D deep residual network. J Digit Imaging 32(5):766–772. https://doi.org/10.1007/s10278-018-0146-z (Erratum in: J Digit Imaging. 2019 Feb 8; PMID: 30511280; PMCID: PMC6737152)

    Article  PubMed  Google Scholar 

  21. Dou Qi, Chen H, Lequan Yu et al (2016) Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 35(5):1182–1195. https://doi.org/10.1109/TMI.2016.2528129

    Article  Google Scholar 

  22. Abstract: Chen H, Yu L, Dou Q, Shi L, Mok VCT, Heng PA (2015) Automatic detection of cerebral microbleeds via deep learning based 3D feature representation. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), New York, NY, pp 764-767. https://doi.org/10.1109/ISBI.2015.7163984

  23. Al-Masni MA, Kim WR, Kim EY, Noh Y, Kim DH (2020) Automated detection of cerebral microbleeds in MR images: a two-stage deep learning approach. Neuroimage Clin 28:102464. https://doi.org/10.1016/j.nicl.2020.102464

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abstract: Al-masni MA, Kim W-R, Kim EY, Noh Y, Kim D-H (2020) A two cascaded network integrating regional-based YOLO and 3D-CNN for cerebral microbleeds detection. In: 2020 42nd Annual international conference of the IEEE engineering in medicine & biology society (EMBC), Montreal, QC, Canada, pp 1055–1058. https://doi.org/10.1109/EMBC44109.2020.9176073

  25. Liu S, Utriainen D, Chai C et al (2019) Cerebral microbleed detection using susceptibility weighted imaging and deep learning. Neuroimage 198:271–282. https://doi.org/10.1016/j.neuroimage.2019.05.046

    Article  PubMed  Google Scholar 

  26. Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL (2019) Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci USA 116(45):22737–22745. https://doi.org/10.1073/pnas.1908021116 (Epub 2019 Oct 21. PMID: 31636195; PMCID: PMC6842581)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ironside N, Chen CJ, Mutasa S, Sim JL, Ding D, Marfatiah S, Roh D, Mukherjee S, Johnston KC, Southerland AM et al (2020) Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke 51(3):815–823. https://doi.org/10.1161/STROKEAHA.119.026764 (Epub 2020 Feb 12. PMID: 32078476)

    Article  PubMed  Google Scholar 

  28. Patel A, Schreuder FHBM, Klijn CJM, Prokop M, Ginneken BV, Marquering HA, Roos YBWEM, Baharoglu MI, Meijer FJA, Manniesing R (2019) Intracerebral haemorrhage segmentation in non-contrast CT. Sci Rep 9(1):17858. https://doi.org/10.1038/s41598-019-54491-6 (PMID: 31780815; PMCID: PMC6882855)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhar R, Falcone GJ, Chen Y, Hamzehloo A, Kirsch EP, Noche RB, Roth K, Acosta J, Ruiz A, Phuah CL et al (2020) Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke 51(2):648–651. https://doi.org/10.1161/STROKEAHA.119.027657 (Epub 2019 Dec 6. PMID: 31805845; PMCID: PMC6993878)

    Article  PubMed  Google Scholar 

  30. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S (2019) An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 3(3):173–182. https://doi.org/10.1038/s41551-018-0324-9 (Epub 2018 Dec 17. PMID: 30948806)

    Article  PubMed  Google Scholar 

  31. Abstract: Desai V, Flanders A, Lakhani P (2017) Application of deep learning in neuroradiology: automated detection of basal ganglia hemorrhage using 2D-convolutional neural networks. arXiv:1710.03823

  32. Li YH, Zhang L, Hu QM, Li HW, Jia FC, Wu JH (2012) Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans. Int J Comput Assist Radiol Surg 7(4):507–516. https://doi.org/10.1007/s11548-011-0664-3 (Epub 2011 Nov 12. PMID: 22081264)

    Article  PubMed  Google Scholar 

  33. Abstract: Majumdar A, Brattain L, Telfer B, Farris C, Scalera J (2018) Detecting intracranial hemorrhage with deep learning. Annu Int Conf IEEE Eng Med Biol Soc 2018:583–587. https://doi.org/10.1109/EMBC.2018.8512336 (PMID: 30440464)

  34. Abstract: Yi T, Pan I, Chen F et al (2020) Identification of intracranial hemorrhage using an original artificial intelligence system. Acad Emerg Med 27(Supplement 1):S194, Netherlands Blackwell Publishing Inc. https://doi.org/10.1111/acem.13961

  35. Flanders AE et al (2020) Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiol Artif Intell 2(3):e190211

    Article  Google Scholar 

  36. Hssayeni MD, Croock MS, Salman AD, Al-khafaji HF, Yahya ZA, Ghoraani B (2020) Intracranial hemorrhage segmentation using a deep convolutional model. Data 5:14

    Article  Google Scholar 

  37. Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, Swinburne N, Zech J, Kim J, Bederson J et al (2018) Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med 24(9):1337–1341. https://doi.org/10.1038/s41591-018-0147-y (Epub 2018 Aug 13. PMID: 30104767)

    Article  CAS  PubMed  Google Scholar 

  38. Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62(3):335–340. https://doi.org/10.1007/s00234-019-02330-w (Epub 2019 Dec 11. PMID: 31828361)

    Article  PubMed  Google Scholar 

  39. Abstract: Ojeda P, Zawaideh M, Mossa-Basha M et al (2019) The utility of deep learning: evaluation of a convolutional neural network for detection of intracranial bleeds on non-contrast head computed tomography studies. SPIE 10949. https://doi.org/10.1117/12.2513167

  40. Rao B, Zohrabian V, Cedeno P, Saha A, Pahade J, Davis MA (2021) Utility of artificial intelligence tool as a prospective radiology peer reviewer—detection of unreported intracranial hemorrhage. Acad Radiol 28(1):85–93. https://doi.org/10.1016/j.acra.2020.01.035 (Epub 2020 Feb 24. PMID: 32102747)

    Article  PubMed  Google Scholar 

  41. Danilov G, Kotik K, Negreeva A, Tsukanova T, Shifrin M, Zakharova N, Batalov A, Pronin I, Potapov A (2020) Classification of intracranial hemorrhage subtypes using deep learning on CT scans. Stud Health Technol Inform 26(272):370–373. https://doi.org/10.3233/SHTI200572 (PMID: 32604679)

    Article  Google Scholar 

  42. Cho J, Park KS, Karki M, Lee E, Ko S, Kim JK, Lee D, Choe J, Son J, Kim M et al (2019) Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models. J Digit Imaging 32(3):450–461. https://doi.org/10.1007/s10278-018-00172-1.PMID:30680471;PMCID:PMC6499861

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ker J, Singh SP, Bai Y, Rao J, Lim T, Wang L (2019) Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors (Basel, Switzerland) 19(9):2167. https://doi.org/10.3390/s19092167

    Article  Google Scholar 

  44. Karki M, Cho J, Lee E et al (2020) CT window trainable neural network for improving intracranial hemorrhage detection by combining multiple settings. Artif Intell Med 106:101850. https://doi.org/10.1016/j.artmed.2020.101850

    Article  PubMed  Google Scholar 

  45. Gautam A, Raman B (2021) Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomed Signal Process Control 63:102178

    Article  Google Scholar 

  46. Abstract: Yune S, Lee H, Do S, Ting D (2018) Case-based learning on artificial intelligence radiology atlas: example of intracranial hemorrhage and urinary stone detection. J Gen Internal Med 33(2 Supplement 1):690–691

  47. Phong TD, Duong HN, Nguyen HT, Trong NT, Nguyen VH, Van Hoa T, Snasel V (2017) Brain hemorrhage diagnosis by using deep learning. In: Proceedings of the 2017 international conference on machine learning and soft computing (ICMLSC'17). Association for Computing Machinery, New York, NY, USA, pp 34–39. https://doi.org/10.1145/3036290.3036326

  48. Li L, Wei M, Liu B, Atchaneeyasakul K, Zhou F, Pan Z, Kumar S, Zhang J, Pu Y, Liebeskind DS, Scalzo F (2020) Deep learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2020.3028243 (Epub ahead of print. PMID: 33001810)

    Article  PubMed  Google Scholar 

  49. Abstract: Barreira C, Bouslama M, Ratcliff J et al (2018) E-078 Advance study: automated detection and volumetric assessment of intracerebral hemorrhage. J Neurointerv Surg 10(Suppl 2):A88–A88

  50. Abstract: Lee H, Kim M, Do S (2018) Practical window setting optimization for medical image deep learning. arXiv:1812.00572

  51. Abstract: Sales Barros R, van der Steen WE, Ponomareva E et al. Abstract WMP29: detection and segmentation of subarachnoid hemorrhages with deep learning. Stroke 50(Suppl_1):AWMP29–AWMP29

  52. Abstract: Patil R, Shreya A, Maulik P, Chaudhury S (2019) Hybrid AI based stroke characterization with explainable model. J Neurol Sci 405:162–163

  53. Abstract: Bizzo B, Hashemian B, McNitt T et al. Abstract WP68: interpretable deep learning-based characterization of intracranial hemorrhage on head CT. Stroke 50(Suppl_1):AWP68–AWP68

  54. Abstract: Hahm MH, Lee HJ, Lim JK, Lee HS (2021) Clinical usefulness of deep learning-based automated segmentation in intracranial hemorrhage. Technol Health Care. Published online February 26, 2021

  55. Abstract: Herweh C, Mokli Y, Bellot P et al (2020) AI-based automated detection of intracranial hemorrhage on non-enhanced CT scans. In: International journal of stroke, vol 15. SAGE Publications Ltd 1 Olivers Yard, 55 City Road, London Ec1y 1sp, England; 2020:295–295

  56. Lee JY, Kim JS, Kim TY, Kim YS (2020) Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm. Sci Rep. https://doi.org/10.1038/s41598-020-77441-z

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ko H, Chung H, Lee H, Lee J (2020) Feasible study on intracranial hemorrhage detection and classification using a CNN-LSTM network. Conf Proc IEEE Eng Med Biol Soc 2020:1290–1293

    Google Scholar 

  58. Burduja M, Ionescu RT, Verga N (2020) Accurate and efficient intracranial hemorrhage detection and subtype classification in 3D CT scans with convolutional and long short-term memory neural networks. Sensors 20(19):5611. https://doi.org/10.3390/s20195611

    Article  PubMed Central  Google Scholar 

  59. Abstract: Praveen K, Sasikala M, Janani A, Shajil N, Nishanthi VH (2021) A simplified framework for the detection of intracranial hemorrhage in CT brain images using deep learning. Curr Med Imaging. https://doi.org/10.2174/1573405617666210218100641 (Published online ahead of print, 2021 Feb 17)

  60. Fan YH, Zhang L, Lam WW, Mok VC, Wong KS (2003) Cerebral microbleeds as a risk factor for subsequent intracerebral hemorrhages among patients with acute ischemic stroke. Stroke 34(10):2459–2462. https://doi.org/10.1161/01.STR.0000090841.90286.81

    Article  PubMed  Google Scholar 

  61. Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  62. Wang S, Tang C, Sun J, Zhang Y (2019) Cerebral micro-bleeding detection based on densely connected neural network. Front Neurosci 13:422. Published 2019 May 17. https://doi.org/10.3389/fnins.2019.00422

  63. Wang S, Sun J, Mehmood I, Pan C, Chen Y, Zhang Y (2020) Cerebral micro‐bleeding identification based on a nine‐layer convolutional neural network with stochastic pooling. Concurr Comput Pract Exp 32

  64. Fazlollahi A, Meriaudeau F, Giancardo L, Villemagne VL, Rowe CC, Yates P, Salvado O, Bourgeat P; AIBL Research Group (2015) Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging. Comput Med Imaging Graph 46 Pt 3:269–276. https://doi.org/10.1016/j.compmedimag.2015.10.001 (Epub 2015 Oct 24. PMID: 26560677)

  65. Dou Q et al (2015) Automatic cerebral microbleeds detection from MR images via independent subspace analysis based hierarchical features. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, Italy, pp 7933–7936.https://doi.org/10.1109/EMBC.2015.7320232

  66. Roy S et al (2015) Cerebral microbleed segmentation from susceptibility weighted images. Proc SPIE 9413:94131E

    Google Scholar 

  67. Abstract: Hou X-X, Chen H (2016) Sparse autoencoder based deep neural network for voxelwise detection of cerebral microbleed. In: 22nd International conference on parallel and distributed systems. IEEE, Wuhan, pp 1229–1232

  68. Abstract: Lu S, Lu Z, Hou X, Cheng H, Wang S (2017) Detection of cerebral microbleeding based on deep convolutional neural network. In: Proceedings of the 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP), Chengdu, pp 93–96

  69. Wang S, Jiang Y, Hou X, Cheng H, Du S (2017) Cerebral micro-bleed detection based on the convolution neural network with rank based average pooling. IEEE Access 1–1. https://doi.org/10.1109/ACCESS.2017.2736558

  70. Morrison MA, Payabvash S, Chen Y, Avadiappan S, Shah M, Zou X, Hess CP, Lupo JM (2018) A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: evaluating vascular injury and data labelling for machine learning. Neuroimage Clin 4(20):498–505. https://doi.org/10.1016/j.nicl.2018.08.002 (PMID: 30140608; PMCID:PMC6104340)

    Article  Google Scholar 

  71. Cloutie RS (2018) Voxelwise detection of cerebral microbleed in CADASIL patients by genetic algorithm and back propagation neural network. Adv Comput Sci Res 65:101–105

    Google Scholar 

  72. Abstract: Gunter JL, Spychalla AJ, Ward CP, Graff-Radford J, Huston J, Kantarci K, Knopman DS, Petersen RC, Jack CR (2018) Automating cerebral microbleed detection in support of Alzheimer's disease trials using a convolutional neural network AI. Alzheimer's Dementia 14(7 Supplement):P1530–P1531

  73. Zhang YD, Hou XX, Chen Y et al (2018) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimed Tools Appl 77:21825–21845. https://doi.org/10.1007/s11042-017-4383-9

    Article  Google Scholar 

  74. Zhang YD, Zhang Y, Hou XX et al (2018) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl 77:10521–10538. https://doi.org/10.1007/s11042-017-4554-8

    Article  Google Scholar 

Download references

Acknowledgements

Work was conceptualized by S. Matsoukas and CK. S. Matsoukas and JC performed screening. S. Matsoukas conducted the analysis and generated the tables and graphs. S. Matsoukas drafted and developed Introduction, Methods, Results, and Discussion regarding ICH. CMB part of the discussion was drafted and developed by JS. S. Matsoukas and CK significantly edited the manuscript. Bias assessment was conducted by S Matsoukas and BRS. All authors approved the final version of the article.

Funding

There were no funding sources for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Matsoukas.

Ethics declarations

Conflicts of interest

J Mocco is the PI on research trials funded by: Stryker Neurovascular, Microvention, Penumbra, and Genentech and he is an investor in: Cerebrotech, Imperative Care, Endostream, Viseon, BlinkTBI, Myra Medical, Serenity, Vastrax, NTI, RIST, Viz.ai, Synchron, Radical, and Truvic. He serves, or has recently served, as a consultant for: Imperative Care, Cerebrotech, Viseon, Endostream, Vastrax, RIST, Synchron, Viz.ai, Perflow, and CVAid. Cristopher Kellner is the PI on research trials supported by Penumbra, Integra Life Sciences, and Cerenovus; he has received research grants from Viz.AI, Penumbra, Integra LifeSciences, ICE Neurosystems, Minnetronix, Irras, Longeviti Neuro Solutions, Cerebrotech Medical Systems, and Siemens; he has an ownership stake in Borealis, Precision Recovery, and Metis Innovative. Metis Innovative is a venture capital group with investments in Synchron, Fluid Biomed, and Proprio.

Authorship Clarifications

BRS has been added as an extra author (3rd), since he contributed significantly during the revision.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Other Information: Registration and protocol: https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 kb)

Supplementary file2 (XLSX 13 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsoukas, S., Scaggiante, J., Schuldt, B.R. et al. Accuracy of artificial intelligence for the detection of intracranial hemorrhage and chronic cerebral microbleeds: a systematic review and pooled analysis. Radiol med 127, 1106–1123 (2022). https://doi.org/10.1007/s11547-022-01530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-022-01530-4

Keywords

Navigation