Skip to main content

Advertisement

Log in

Advanced CT techniques for assessing hepatocellular carcinoma

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the sixth-most common cancer in the world, and hepatic dynamic CT studies are routinely performed for its evaluation. Ongoing studies are examining advanced imaging techniques that may yield better findings than are obtained with conventional hepatic dynamic CT scanning. Dual-energy CT-, perfusion CT-, and artificial intelligence-based methods can be used for the precise characterization of liver tumors, the quantification of treatment responses, and for predicting the overall survival rate of patients. In this review, the advantages and disadvantages of conventional hepatic dynamic CT imaging are reviewed and the general principles of dual-energy- and perfusion CT, and the clinical applications and limitations of these technologies are discussed with respect to HCC. Finally, we address the utility of artificial intelligence-based methods for diagnosing HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. WHO Global Cancer Observatory. https://gco.iarc.fr/

  2. Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022. https://doi.org/10.1002/hep.24199

    Article  PubMed  Google Scholar 

  3. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68(2):723–750. https://doi.org/10.1002/hep.29913

    Article  PubMed  Google Scholar 

  4. American College of Radiology (2018) CT/MRI LI-RADS v2018. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018

  5. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, Zhu AX, Murad MH, Marrero JA (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67(1):358–380. https://doi.org/10.1002/hep.29086

    Article  PubMed  Google Scholar 

  6. Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, Han JK, Choi BI (2015) Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 275(1):97–109. https://doi.org/10.1148/radiol.14140690

    Article  PubMed  Google Scholar 

  7. Guo J, Seo Y, Ren S, Hong S, Lee D, Kim S, Jiang Y (2016) Diagnostic performance of contrast-enhanced multidetector computed tomography and gadoxetic acid disodium-enhanced magnetic resonance imaging in detecting hepatocellular carcinoma: direct comparison and a meta-analysis. Abdom Radiol (NY) 41(10):1960–1972. https://doi.org/10.1007/s00261-016-0807-7

    Article  Google Scholar 

  8. Chen L, Zhang L, Bao J, Zhang J, Li C, Xia Y, Huang X, Wang J (2013) Comparison of MRI with liver-specific contrast agents and multidetector row CT for the detection of hepatocellular carcinoma: a meta-analysis of 15 direct comparative studies. Gut 62(10):1520–1521. https://doi.org/10.1136/gutjnl-2013-305231

    Article  PubMed  Google Scholar 

  9. Haj-Mirzaian A, Kadivar A, Kamel IR, Zaheer A (2020) Updates on imaging of liver tumors. Curr Oncol Rep 22(5):46. https://doi.org/10.1007/s11912-020-00907-w

    Article  PubMed  Google Scholar 

  10. Wald C, Russo MW, Heimbach JK, Hussain HK, Pomfret EA, Bruix J (2013) New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 266(2):376–382. https://doi.org/10.1148/radiol.12121698

    Article  PubMed  Google Scholar 

  11. Seehofer D, Ollinger R, Denecke T, Schmelzle M, Andreou A, Schott E, Pratschke J (2017) Blood transfusions and tumor biopsy may increase HCC recurrence rates after liver transplantation. J Transplant 2017:9731095. https://doi.org/10.1155/2017/9731095

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yoneda N, Matsui O, Kobayashi S, Kitao A, Kozaka K, Inoue D, Yoshida K, Minami T, Koda W, Gabata T (2019) Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma. Jpn J Radiol 37(3):191–208. https://doi.org/10.1007/s11604-019-00817-3

    Article  CAS  PubMed  Google Scholar 

  13. Liapi E, Mahesh M, Sahani DV (2015) Is CT perfusion ready for liver cancer treatment evaluation? J Am Coll Radiol JACR 12(1):111–113. https://doi.org/10.1016/j.jacr.2014.10.007

    Article  PubMed  Google Scholar 

  14. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342. https://doi.org/10.1148/radiol.14131480

    Article  PubMed  Google Scholar 

  15. Elbanna KY, Mansoori B, Mileto A, Rogalla PLSG (2020) Dual-energy CT in diffuse liver disease: is there a role? Abdom Radiol (NY) 45(11):3413–3424. https://doi.org/10.1007/s00261-020-02702-4

    Article  Google Scholar 

  16. De Cecco CN, Darnell A, Macias N, Ayuso JR, Rodriguez S, Rimola J, Pages M, Garcia-Criado A, Rengo M, Laghi A, Ayuso C (2013) Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol 48(1):1–9. https://doi.org/10.1097/RLI.0b013e31826e7902

    Article  PubMed  Google Scholar 

  17. Durieux P, Gevenois PA, Muylem AV, Howarth N, Keyzer C (2018) Abdominal attenuation values on virtual and true unenhanced images obtained with third-generation dual-source dual-energy CT. AJR Am J Roentgenol 210(5):1042–1058. https://doi.org/10.2214/AJR.17.18248

    Article  PubMed  Google Scholar 

  18. Borhani AA, Kulzer M, Iranpour N, Ghodadra A, Sparrow M, Furlan A, Tublin ME (2017) Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol (NY) 42(3):710–717. https://doi.org/10.1007/s00261-016-0991-5

    Article  Google Scholar 

  19. Judy PF, Swensson RG, Szulc M (1981) Lesion detection and signal-to-noise ratio in CT images. Med Phys 8(1):13–23. https://doi.org/10.1118/1.594903

    Article  CAS  PubMed  Google Scholar 

  20. Pfeiffer D, Parakh A, Patino M, Kambadakone A, Rummeny EJ, Sahani DV (2018) Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC. Abdom Radiol (NY) 43(12):3317–3323. https://doi.org/10.1007/s00261-018-1636-7

    Article  Google Scholar 

  21. Ascenti G, Sofia C, Mazziotti S, Silipigni S, D’Angelo T, Pergolizzi S, Scribano E (2016) Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma. Clin Radiol 71(9):938-e931–e939. https://doi.org/10.1016/j.crad.2016.05.002

    Article  PubMed  Google Scholar 

  22. Lv P, Lin XZ, Chen K, Gao J (2012) Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 22(10):2117–2124. https://doi.org/10.1007/s00330-012-2485-3

    Article  PubMed  Google Scholar 

  23. Nagayama Y, Nakaura T, Oda S, Utsunomiya D, Funama Y, Iyama Y, Taguchi N, Namimoto T, Yuki H, Kidoh M, Hirata K, Nakagawa M, Yamashita Y (2018) Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol. Eur Radiol 28(4):1719–1730. https://doi.org/10.1007/s00330-017-5114-3

    Article  PubMed  Google Scholar 

  24. Mileto A, Nelson RC, Samei E, Choudhury KR, Jaffe TA, Wilson JM, Marin D (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol 203(6):1257–1264. https://doi.org/10.2214/AJR.13.12229

    Article  PubMed  Google Scholar 

  25. Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49(9):586–592. https://doi.org/10.1097/RLI.0000000000000060

    Article  PubMed  Google Scholar 

  26. De Cecco CN, Caruso D, Schoepf UJ, De Santis D, Muscogiuri G, Albrecht MH, Meinel FG, Wichmann JL, Burchett PF, Varga-Szemes A, Sheafor DH, Hardie AD (2018) A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol 28(8):3393–3404. https://doi.org/10.1007/s00330-018-5313-6

    Article  PubMed  Google Scholar 

  27. Matsuda M, Tsuda T, Kido T, Tanaka H, Nishiyama H, Itoh T, Nakao K, Hirooka M, Mochizuki T (2018) Dual-energy computed tomography in patients with small hepatocellular carcinoma: utility of noise-reduced monoenergetic images for the evaluation of washout and image quality in the equilibrium phase. J Comput Assist Tomogr 42(6):937–943. https://doi.org/10.1097/RCT.0000000000000752

    Article  PubMed  Google Scholar 

  28. Schindera ST, Tock I, Marin D, Nelson RC, Raupach R, Hagemeister M, von Allmen G, Vock P, Szucs-Farkas Z (2010) Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study. Radiology 256(2):528–535. https://doi.org/10.1148/radiol.10092086

    Article  PubMed  Google Scholar 

  29. Bayasgalan E, Higaki T, Fukumoto W, Nakamura Y, Chosa K, Tatsugami F, Awai K (2018) Improved detectability of hyper-dense nodules using dual-energy computed tomography scanning: phantom study using simulated liver harboring nodules ((和訳中)). Hiroshima J Med Sci 67(3):63–69

    Google Scholar 

  30. Lee JA, Jeong WK, Kim Y, Song SY, Kim J, Heo JN, Park CK (2013) Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging. Eur J Radiol 82(4):569–576. https://doi.org/10.1016/j.ejrad.2012.11.014

    Article  PubMed  Google Scholar 

  31. Lee SH, Lee JM, Kim KW, Klotz E, Kim SH, Lee JY, Han JK, Choi BI (2011) Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps. Invest Radiol 46(2):77–84. https://doi.org/10.1097/RLI.0b013e3181f23fcd

    Article  PubMed  Google Scholar 

  32. Altenbernd J, Wetter A, Forsting M, Umutlu L (2016) Treatment response after radioembolisation in patients with hepatocellular carcinoma—an evaluation with dual energy computed-tomography. Eur J Radiol Open 3:230–235. https://doi.org/10.1016/j.ejro.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dai X, Schlemmer HP, Schmidt B, Hoh K, Xu K, Ganten TM, Ganten MK (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol 82(2):327–334. https://doi.org/10.1016/j.ejrad.2012.11.013

    Article  PubMed  Google Scholar 

  34. Liu YS, Chuang MT, Tsai YS, Tsai HM, Lin XZ (2012) Nitroglycerine use in transcatheter arterial (chemo)embolization in patients with hepatocellular carcinoma and dual-energy CT assessment of lipiodol retention. Eur Radiol 22(10):2193–2200. https://doi.org/10.1007/s00330-012-2484-4

    Article  PubMed  Google Scholar 

  35. Miles KA, Hayball M, Dixon AK (1991) Colour perfusion imaging: a new application of computed tomography. Lancet 337(8742):643–645

    Article  CAS  PubMed  Google Scholar 

  36. Kim SH, Kamaya A, Willmann JK (2014) CT perfusion of the liver: principles and applications in oncology. Radiology 272(2):322–344. https://doi.org/10.1148/radiol.14130091

    Article  PubMed  Google Scholar 

  37. Miles KA, Lee TY, Goh V, Klotz E, Cuenod C, Bisdas S, Groves AM, Hayball MP, Alonzi R, Brunner T (2012) Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22(7):1430–1441. https://doi.org/10.1007/s00330-012-2379-4

    Article  CAS  PubMed  Google Scholar 

  38. Ippolito D, Pecorelli A, Querques G, Drago SG, Maino C, Franzesi CT, Hatzidakis A, Sironi S (2019) Dynamic computed tomography perfusion imaging: complementary diagnostic tool in hepatocellular carcinoma assessment from diagnosis to treatment follow-up. Acad Radiol 26(12):1675–1685. https://doi.org/10.1016/j.acra.2019.02.010

    Article  PubMed  Google Scholar 

  39. Fischer MA, Kartalis N, Grigoriadis A, Loizou L, Stal P, Leidner B, Aspelin P, Brismar TB (2015) Perfusion computed tomography for detection of hepatocellular carcinoma in patients with liver cirrhosis. Eur Radiol. https://doi.org/10.1007/s00330-015-3732-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fischer MA, Marquez HP, Gordic S, Leidner B, Klotz E, Aspelin P, Alkadhi H, Brismar TB (2017) Arterio-portal shunts in the cirrhotic liver: perfusion computed tomography for distinction of arterialized pseudolesions from hepatocellular carcinoma. Eur Radiol 27(3):1074–1080. https://doi.org/10.1007/s00330-016-4432-1

    Article  PubMed  Google Scholar 

  41. Hatzidakis A, Perisinakis K, Kalarakis G, Papadakis A, Savva E, Ippolito D, Karantanas A (2019) Perfusion-CT analysis for assessment of hepatocellular carcinoma lesions: diagnostic value of different perfusion maps. Acta Radiol 60(5):561–568. https://doi.org/10.1177/0284185118791200

    Article  PubMed  Google Scholar 

  42. Wu D, Tan M, Zhou M, Sun H, Ji Y, Chen L, Chen G, Zeng M (2014) Liver Computed Tomographic Perfusion in the Assessment of Microvascular Invasion in Patients With Small Hepatocellular Carcinoma. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000098

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marquez HP, Puippe G, Mathew RP, Alkadhi H, Pfammatter T, Fischer MA (2017) CT Perfusion for early response evaluation of radiofrequency ablation of focal liver lesions: first experience. Cardiovasc Intervent Radiol 40(1):90–98. https://doi.org/10.1007/s00270-016-1444-9

    Article  PubMed  Google Scholar 

  44. Yang L, Zhang XM, Tan BX, Liu M, Dong GL, Zhai ZH (2012) Computed tomographic perfusion imaging for the therapeutic response of chemoembolization for hepatocellular carcinoma. J Comput Assist Tomogr 36(2):226–230. https://doi.org/10.1097/RCT.0b013e318245c23c

    Article  PubMed  Google Scholar 

  45. Su TH, He W, Jin L, Chen G, Xiao GW (2017) Early response of hepatocellular carcinoma to chemoembolization: volume computed tomography liver perfusion imaging as a short-term Response predictor. J Comput Assist Tomogr 41(2):315–320. https://doi.org/10.1097/RCT.0000000000000511

    Article  PubMed  Google Scholar 

  46. Borgheresi A, Gonzalez-Aguirre A, Brown KT, Getrajdman GI, Erinjeri JP, Covey A, Yarmohammadi H, Ziv E, Sofocleous CT, Boas FE (2018) Does enhancement or perfusion on preprocedure CT predict outcomes after embolization of hepatocellular carcinoma? Acad Radiol 25(12):1588–1594. https://doi.org/10.1016/j.acra.2018.02.027

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ippolito D, Querques G, Okolicsanyi S, Franzesi CT, Strazzabosco M, Sironi S (2017) Diagnostic value of dynamic contrast-enhanced CT with perfusion imaging in the quantitative assessment of tumor response to sorafenib in patients with advanced hepatocellular carcinoma: a feasibility study. Eur J Radiol 90:34–41. https://doi.org/10.1016/j.ejrad.2017.02.027

    Article  PubMed  Google Scholar 

  48. Ippolito D, Querques G, Pecorelli A, Talei Franzesi C, Okolicsanyi S, Strazzabosco M, Sironi S (2019) Diagnostic value of quantitative perfusion computed tomography technique in the assessment of tumor response to sorafenib in patients with advanced hepatocellular carcinoma. J Comput Assist Tomogr 43(2):206–213. https://doi.org/10.1097/RCT.0000000000000807

    Article  PubMed  Google Scholar 

  49. Nakamura Y, Kawaoka T, Higaki T, Fukumoto W, Honda Y, Iida M, Fujioka C, Kiguchi M, Aikata H, Chayama K, Awai K (2018) Hepatocellular carcinoma treated with sorafenib: arterial tumor perfusion in dynamic contrast-enhanced CT as early imaging biomarkers for survival. Eur J Radiol 98:41–49. https://doi.org/10.1016/j.ejrad.2017.10.017

    Article  PubMed  Google Scholar 

  50. Cruz M, Ferreira AA, Papanikolaou N, Banerjee R, Alves FC (2020) New boundaries of liver imaging: from morphology to function. Eur J Intern Med 79:12–22. https://doi.org/10.1016/j.ejim.2020.06.004

    Article  PubMed  Google Scholar 

  51. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  52. Greenspan H, Ginneken BV, Sommers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159. https://doi.org/10.1109/TMI.2016.2553401

    Article  Google Scholar 

  53. Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286(3):887–896. https://doi.org/10.1148/radiol.2017170706

    Article  PubMed  Google Scholar 

  54. Vorontsov E, Cerny M, Régnier P, Di Jorio L, Pal CJ, Lapointe R, Vandenbroucke-Menu F, Turcotte S, Kadoury S, Tang A (2019) Deep learning for automated segmentation of liver lesions at CT in patients with colorectal cancer liver metastases. Radiol Artif Intell 1(2):180014

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamashita R, Mittendorf A, Zhu Z, Fowler KJ, Santillan CS, Sirlin CB, Bashir MR, Do RKG (2020) Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study. Abdom Radiol (NY) 45(1):24–35. https://doi.org/10.1007/s00261-019-02306-7

    Article  Google Scholar 

  56. Park HJ, Park B, Lee SS (2020) Radiomics and deep learning: hepatic applications. Korean J Radiol 21(4):387–401. https://doi.org/10.3348/kjr.2019.0752

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yan K, Wang X, Lu L, Summers RM (2018) DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J Med Imaging (Bellingham) 5(3):036501. https://doi.org/10.1117/1.JMI.5.3.036501

    Article  Google Scholar 

  58. Volders D, Bols A, Haspeslagh M, Coenegrachts K (2013) Model-based iterative reconstruction and adaptive statistical iterative reconstruction techniques in abdominal CT: comparison of image quality in the detection of colorectal liver metastases. Radiology 269(2):469–474. https://doi.org/10.1148/radiol.13130002

    Article  PubMed  Google Scholar 

  59. Chang W, Lee JM, Lee K, Yoon JH, Yu MH, Han JK, Choi BI (2013) Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Invest Radiol 48(8):598–606. https://doi.org/10.1097/RLI.0b013e3182899104

    Article  CAS  PubMed  Google Scholar 

  60. Mileto A, Guimaraes LS, McCollough CH, Fletcher JG, Yu L (2019) State of the art in abdominal CT: the limits of iterative reconstruction algorithms. Radiology. https://doi.org/10.1148/radiol.2019191422

    Article  PubMed  Google Scholar 

  61. Laurent G, Villani N, Hossu G, Rauch A, Noel A, Blum A, Gondim Teixeira PA (2019) Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance. Eur Radiol 29(8):4016–4025. https://doi.org/10.1007/s00330-018-5988-8

    Article  PubMed  Google Scholar 

  62. Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, Yu Z, Akino N, Awai K (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29(11):6163–6171. https://doi.org/10.1007/s00330-019-06170-3

    Article  PubMed  Google Scholar 

  63. Nakamura Y, Higaki T, Tatsugami F, Zhou J, Yu Z, Akino N, Ito Y, Iida M, Awai K (2019) Deep learning-based CT image reconstruction: initial evaluation targeting hypovascular hepatic metastases. Radiol Artif Intell 1(6):e180011. https://doi.org/10.1148/ryai.2019180011

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nakamura Y, Higaki T, Tatsugami F, Honda Y, Narita K, Akagi M, Awai K (2020) Possibility of deep learning in medical imaging focusing improvement of computed tomography image quality. J Comput Assist Tomogr 44(2):161–167. https://doi.org/10.1097/RCT.0000000000000928

    Article  PubMed  Google Scholar 

  65. Higaki T, Nakamura Y, Zhou J, Yu Z, Nemoto T, Tatsugami F, Awai K (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27(1):82–87. https://doi.org/10.1016/j.acra.2019.09.008

    Article  PubMed  Google Scholar 

  66. Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, Frandon J (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. https://doi.org/10.1007/s00330-020-06724-w

    Article  PubMed  Google Scholar 

  67. Solomon J, Lyu P, Marin D, Samei E (2020) Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Med Phys 47(9):3961–3971. https://doi.org/10.1002/mp.14319

    Article  PubMed  Google Scholar 

  68. Tian SF, Liu AL, Liu JH, Liu YJ, Pan JD (2019) Potential value of the PixelShine deep learning algorithm for increasing quality of 70 kVp+ASiR-V reconstruction pelvic arterial phase CT images. Jpn J Radiol 37(2):186–190. https://doi.org/10.1007/s11604-018-0798-0

    Article  PubMed  Google Scholar 

  69. Pan T, Hasegawa A, Luo D, Wu CC, Vikram R (2020) Technical note: impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques. Med Phys 47(2):480–487. https://doi.org/10.1002/mp.13937

    Article  PubMed  Google Scholar 

  70. Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K (2019) Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37(1):73–80. https://doi.org/10.1007/s11604-018-0796-2

    Article  PubMed  Google Scholar 

  71. Matsukiyo R, Ohno Y, Matsuyama T, Nagata H, Kimata H, Ito Y, Ogawa Y, Murayama K, Kato R, Toyama H (2020) Deep learning-based and hybrid-type iterative reconstructions for CT: comparison of capability for quantitative and qualitative image quality improvements and small vessel evaluation at dynamic CE-abdominal CT with ultra-high and standard resolutions. Jpn J Radiol. https://doi.org/10.1007/s11604-020-01045-w

    Article  PubMed  Google Scholar 

  72. Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, Hoi Y, Akino N, Angel E, Madan R, Kalra MK (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of Submillisievert chest and abdominal CT. AJR Am J Roentgenol 214(3):566–573. https://doi.org/10.2214/AJR.19.21809

    Article  PubMed  Google Scholar 

  73. Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Awai K (2020) Deep learning reconstruction of equilibrium phase CT images in obese patients. Eur J Radiol 133:109349. https://doi.org/10.1016/j.ejrad.2020.109349

    Article  PubMed  Google Scholar 

  74. Nakamura Y, Narita K, Higaki T, Akagi M, Honda Y, Awai K (2021) Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT. Eur Radiol. https://doi.org/10.1007/s00330-020-07566-2

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR (2021) Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction. Radiology 298(1):180–188. https://doi.org/10.1148/radiol.2020202317

    Article  PubMed  Google Scholar 

  76. Narita K, Nakamura Y, Higaki T, Akagi M, Honda Y, Awai K (2020) Deep learning reconstruction of drip-infusion cholangiography acquired with ultra-high-resolution computed tomography. Abdom Radiol (NY) 45(9):2698–2704. https://doi.org/10.1007/s00261-020-02508-4

    Article  Google Scholar 

  77. Hamamura T, Hayashida Y, Takeshita Y, Sugimoto K, Ueda I, Futatsuya K, Kakeda S, Aoki T, Korogi Y (2019) The usefulness of full-iterative reconstruction algorithm for the visualization of cystic artery on CT angiography. Jpn J Radiol 37(7):526–533. https://doi.org/10.1007/s11604-019-00839-x

    Article  PubMed  Google Scholar 

  78. Ichikawa Y, Kanii Y, Yamazaki A, Nagasawa N, Nagata M, Ishida M, Kitagawa K, Sakuma H (2021) Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction. Jpn J Radiol. https://doi.org/10.1007/s11604-021-01089-6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jensen CT, Liu X, Tamm EP, Chandler AG, Sun J, Morani AC, Javadi S, Wagner-Bartak NA (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215(1):50–57. https://doi.org/10.2214/AJR.19.22332

    Article  PubMed  Google Scholar 

  80. Cao L, Liu X, Li J, Qu T, Chen L, Cheng Y, Hu J, Sun J, Guo J (2020) A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions. Br J Radiol. https://doi.org/10.1259/bjr.20201086

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Kazuo Awai received a research grant from Canon Medical Systems Co. Ltd (A1700878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Nakamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, Y., Higaki, T., Honda, Y. et al. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol med 126, 925–935 (2021). https://doi.org/10.1007/s11547-021-01366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01366-4

Keywords

Navigation