Skip to main content

Coronary artery disease (CAD) extension-derived risk stratification for asymptomatic diabetic patients: usefulness of low-dose coronary computed tomography angiography (CCTA) in detecting high-risk profile patients

Abstract

Background

As one of the most frequent risk factors for cardiovascular disease, type 2 diabetes mellitus (T2DM) is one of the largest causes of death. However, an acute cardiac presentation is not uncommon in diabetic patients, and the current investigative approach remains often inadequate. The aim of our study was to retrospectively stratify the risk of asymptomatic T2DM patients using low-dose 640-slice coronary computed tomography angiography (CCTA).

Materials and methods

CCTA examinations of 62 patients (mean age, 65 years) with previous diagnosis of type 2 diabetes and without cardiac symptoms were analyzed. Image acquisition was performed using a 640-slice CT. Per-patient, per-vessel and per-plaque analyses were performed. Stratification risk was evaluated according to the ESC guidelines. The patients were followed up after 2.21 ± 0.56 years from CCTA examination.

Results

Coronary artery disease (CAD) was found in 58 patients (93.55%) presenting 290 plaques. Analysis of all samples showed severe-to-occlusive atherosclerosis in 24 patients (38.7% of cases). However, over the degree of stenosis, 23 patients were evaluated at high risk considering the extension of CAD. Good agreement was shown by the correlation of CAD extension/risk estimation and MACE incidence, according to a Kaplan–Meier survival analysis (p value = 0.001), with a 7.25-fold increased risk (HR 7.25 CI 2.13–24.7; p value = 0.002).

Conclusion

Our study confirms the high capability of CCTA to properly stratify the CV risk of asymptomatic T2DM patients. Its use could be recommended if we consider how current investigative strategies to correctly assess these patients often seem inadequate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

T2DM:

Type 2 diabetes mellitus

CAD:

Coronary artery disease

CCTA:

Coronary computed tomography angiography

MACE:

Major adverse cardiac events

CHF:

Chronic heart failure

PCI:

Percutaneous coronary intervention

ECG:

Electrocardiogram 

AEC:

Automatic exposure control

SD:

Standard deviation

FOV:

Field of view

DLP:

Dose length product

MPR:

Multiplanar reconstruction

MIP:

Maximum intensity projection

VR:

Volume rendering

AHA:

American Heart Association

HU:

Hounsfield unit

ESC:

European Society of Cardiology

CS:

Calcium score

ANOVA:

Analysis of variance

LMA:

Left main artery

LDA:

Left descending artery

CX:

Circumflex artery

RCA:

Right coronary artery

ICA:

Invasive coronary angiography

OMT:

Optimal medical therapy

CABG:

Coronary artery bypass grafting

HR:

Hazard ratio

CV:

Cardiovascular

PET:

Positron emission tomography

CMR:

Cardiac magnetic resonance

References

  1. 1.

    Ulimoen GR, Ofstad AP, Endresen K, Gullestad L, Johansen OE, Borthne A (2015) Low-dose CT coronary angiography for assessment of coronary artery disease in patients with type 2 diabetes—a cross-sectional study. BMC Cardiovasc Disord 15(1):147

    Article  Google Scholar 

  2. 2.

    Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N et al (2013) ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 34(39):3035–3087

    Article  Google Scholar 

  3. 3.

    Gu K, Cowie CC, Harris MI (1998) Mortality in adults with and without diabetes in a National cohort of the U.S. Population, 1971–1993. Diabetes Care 21(7):1138–1145

    CAS  Article  Google Scholar 

  4. 4.

    Nathan DM, Meigs J, Singer DE (1997) The epidemiology of cardiovascular disease in type 2 diabetes mellitus: How sweet it is… or is it? Lancet 350(SUPPL.1):4–9

    Article  Google Scholar 

  5. 5.

    Clerc OF, Fuchs TA, Stehli J, Benz DC, Gräni C, Messerli M et al (2018) Non-invasive screening for coronary artery disease in asymptomatic diabetic patients: a systematic review and meta-analysis of randomised controlled trials. Eur Heart J Cardiovasc Imaging 19(8):838–846

    Article  Google Scholar 

  6. 6.

    Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS et al (2010) ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography. A report of the American College of Cardiology foundation task force on expert consensus documents. J Am Coll Cardiol 55(23):2663–2699

    Article  Google Scholar 

  7. 7.

    Andreini D, Martuscelli E, Guaricci AI, Carrabba N, Magnoni M, Tedeschi C et al (2016) Clinical recommendations on Cardiac-CT in 2015: a position paper of the Working Group on Cardiac-CT and Nuclear Cardiology of the Italian Society of Cardiology. J Cardiovasc Med 17(2):73–84

    Article  Google Scholar 

  8. 8.

    Di Cesare E, Carbone I, Carriero A, Centonze M, De Cobelli F, De Rosa R et al (2012) Clinical indications for cardiac computed tomography. From the Working Group of the Cardiac Radiology Section of the Italian Society of Medical Radiology (SIRM) Indicazioni cliniche per l’utilizzo della tomografia computerizzata del cuore. A cura del grupp. Radiol Med 117(6):901–938

    Article  Google Scholar 

  9. 9.

    Di Cesare E, Cademartiri F, Carbone I, Carriero A, Centonze M, De Cobelli F et al (2013) Indicazioni cliniche per l’utilizzo della cardio RM. A cura del Gruppo di lavoro della Sezione di Cardio-Radiologia della SIRM. Radiol Medica 118(5):752–798

    Article  Google Scholar 

  10. 10.

    Kannel WB, Wilson P, D’Agostino R, Cobb J (1998) Sudden coronary death in women. Am Heart J 136(2):205–212

    CAS  Article  Google Scholar 

  11. 11.

    Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, De Boer IH et al (2015) Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American diabetes association. Diabetes Care 38(9):1777–1803

    CAS  Article  Google Scholar 

  12. 12.

    Di Cesare E, Gennarelli A, Di Sibio A, Felli V, Perri M, Splendiani A et al (2016) 320-row coronary computed tomography angiography (CCTA) with automatic exposure control (AEC): effect of 100 kV versus 120 kV on image quality and dose exposure. Radiol Medica 121(8):618–625

    Article  Google Scholar 

  13. 13.

    Di Cesare E, Gennarelli A, Di Sibio A, Felli V, Splendiani A, Gravina GL et al (2015) Image quality and radiation dose of single heartbeat 640-slice coronary CT angiography: a comparison between patients with chronic Atrial Fibrillation and subjects in normal sinus rhythm by propensity analysis. Eur J Radiol 84:631–636

    Article  Google Scholar 

  14. 14.

    Bittencourt MS, Schmidt B, Seltmann M, Muschiol G, Ropers D, Daniel WG et al (2011) Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging 27(7):1081–1087

    Article  Google Scholar 

  15. 15.

    European Commission. European guidelines on quality criteria for computed tomography european guidelines on quality criteria. Eur 16262 En. 1999. pp 1–71

  16. 16.

    Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM et al (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3(2):122–136

    Article  Google Scholar 

  17. 17.

    Park HB, Heo R, Ó Hartaigh B, Cho I, Gransar H, Nakazato R et al (2015) Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging 8(1):1–10

    Article  Google Scholar 

  18. 18.

    Saremi F, Achenbach S (2015) Coronary plaque characterization using CT. AJR Am J Roentgenol 204(3):W249–W260

    Article  Google Scholar 

  19. 19.

    Kamimura M, Moroi M, Isobe M, Hiroe M (2012) Role of coronary CT angiography in asymptomatic patients with type 2 diabetes mellitus. Int Heart J 53(1):23–28

    Article  Google Scholar 

  20. 20.

    Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Article  Google Scholar 

  21. 21.

    Guaricci AI, De Santis D, Carbone M, Muscogiuri G, Guglielmo M, Baggiano A et al (2018) Coronary atherosclerosis assessment by coronary CT angiography in asymptomatic diabetic population: a critical systematic review of the literature and future perspectives. Biomed Res Int 2018:1–13

    Google Scholar 

  22. 22.

    Vanhaebost J, Ducrot K, De Froidmont S, Grabherr S, Palmiere C (2017) Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry. Radiol Med. 122:95–105. https://doi.org/10.1007/s11547-016-0698-2

    Article  PubMed  Google Scholar 

  23. 23.

    Perk J, De Backer G, Gohlke H, Graham I, Reiner Ž, Verschuren M et al (2012) European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). Eur Heart J 33(13):1635–1701

    CAS  Article  Google Scholar 

  24. 24.

    Ruth L, Richard J, Rury R (2007) Framingham, SCORE, and DECODE risk equations do not provide reliable. Diabetes Care 30(May):1292–1293

    Google Scholar 

  25. 25.

    Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Münster (PROCAM) study. Circulation 105(3):310–315

    Article  Google Scholar 

  26. 26.

    Marrugat J, Solanas P, D’Agostino R, Sullivan L, Ordovas J, Cordón F et al (2003) Coronary risk estimation in Spain using a calibrated Framingham function. Rev Esp Cardiol 56(3):253–261

    Article  Google Scholar 

  27. 27.

    Ippolito D, Fior D, Franzesi CT, Riva L, Casiraghi A, Sironi S (2017) Diagnostic accuracy of 256-row multidetector CT coronary angiography with prospective ECG -gating combined with fourth-generation iterative reconstruction algorithm in the assessment of coronary artery bypass: evaluation of dose reduction and image quality. Radiol Med 122(12):893–901. https://doi.org/10.1007/s11547-017-0800-4

    Article  PubMed  Google Scholar 

  28. 28.

    Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P et al (2006) Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 27(6):713–721

    Article  Google Scholar 

  29. 29.

    Mantini C, Di Giammarco G, Pizzicannella J, Gallina S, Ricci F, D'Ugo E et al (2018) Grading of aortic stenosis severity: a head-to-head comparison between cardiac magnetic resonance imaging and echocardiography. Radiol Med. https://doi.org/10.1007/s11547-018-0895-2

    Article  PubMed  Google Scholar 

  30. 30.

    Di Leo G, D'Angelo ID, Alì M, Cannaò PM, Mauri G, Secchi F et al (2016) Intra-and inter-reader reproducibility of blood flow measurements on the ascending aorta and pulmonary artery using cardiac magnetic resonance. Radiol Med. 122(3):179–185. https://doi.org/10.1007/s11547-016-0706-6

    Article  PubMed  Google Scholar 

  31. 31.

    Schicchi N, Tagliati C, Agliata G, Esposto P, Raffaella P (2018) MRI evaluation of peripheral vascular anomalies using time-resolved imaging of contrast kinetics (TRICKS) sequence. Radiol Med 123(8):563–71. https://doi.org/10.1007/s11547-018-0875-6

    Article  PubMed  Google Scholar 

  32. 32.

    Yokota S, Mouden M, Ottervanger JP (2016) High-risk coronary artery disease, but normal myocardial perfusion: A matter of concern? J Nuclear Cardiol 23(3):542–545

    Article  Google Scholar 

  33. 33.

    Faletti R, Gatti M, Baralis I, Bergamasco L, Bonamini R, Ferroni F et al (2017) Clinical and magnetic resonance evolution of “infarct-like” myocarditis. Radiol Med 122(4):273–279

    Article  Google Scholar 

  34. 34.

    Tessa C, Del J, Alessio M, Stefano L, Luca D, Marco S et al (2018) T1 and T2 mapping in the identification of acute myocardial injury in patients with NSTEMI. Radiol Med 123(12):926–934. https://doi.org/10.1007/s11547-018-0931-2

    Article  PubMed  Google Scholar 

  35. 35.

    Min JK, Labounty TM, Gomez MJ, Achenbach S, Al-Mallah M, Budoff MJ et al (2014) Incremental prognostic value of coronary computed tomographic angiography over coronary artery calcium score for risk prediction of major adverse cardiac events in asymptomatic diabetic individuals. Atherosclerosis 232(2):298–304. https://doi.org/10.1016/j.atherosclerosis.2013.09.025

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Halon DA, Azencot M, Rubinshtein R, Zafrir B, Flugelman MY, Lewis BS (2016) Coronary computed tomography (CT) angiography as a predictor of cardiac and noncardiac vascular events in asymptomatic type 2 diabetics: a 7-year population-based cohort study. J Am Heart Assoc 5(6):1–19

    Article  Google Scholar 

  37. 37.

    Kang SH, Park GM, Lee SW, Yun SC, Kim YH, Cho YR et al (2016) Long-term prognostic value of coronary CT angiography in asymptomatic type 2 diabetes mellitus. JACC Cardiovasc Imaging 9(11):1292–1300

    Article  Google Scholar 

  38. 38.

    Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C et al (2019) ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2019:1–71

    Google Scholar 

  39. 39.

    Blanke P, Naoum C, Ahmadi A, Cheruvu C, Soon J, Arepalli C et al (2016) Long-term prognostic utility of coronary CT angiography in stable patients with diabetes mellitus. JACC Cardiovasc Imaging 9(11):1280–1288

    Article  Google Scholar 

  40. 40.

    Stabley JN, Towler DA (2017) Arterial calcification in diabetes mellitus: preclinical models and translational implications. Arterioscler Thromb Vasc Biol 37(2):205–217

    CAS  Article  Google Scholar 

  41. 41.

    Tesche C, De Cecco CN, Stubenrauch A, Jacobs BE, Varga A, Litwin SE et al (2016) Correlation and predictive value of aortic root calcification markers with coronary artery calcification and obstructive coronary artery disease. Radiol Med. 122(2):113–120. https://doi.org/10.1007/s11547-016-0707-5

    Article  PubMed  Google Scholar 

  42. 42.

    La Grutta L, Marasà M, Toia P, Ajello D, Albano D, Maffei E et al (2016) Integrated non-invasive approach to atherosclerosis with cardiac CT and carotid ultrasound in patients with suspected coronary artery disease. Radiol Med 122(1):16–21. https://doi.org/10.1007/s11547-016-0692-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Angela Martella for the English revision manuscript.

Funding

No funding were obtained.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Palumbo.

Ethics declarations

Conflict of interest

No conflict of interest exist for all the authors.

Ethical approval

Our retrospective study was carried out after approval obtained by the internal review board committee of our university.

Informed consent

All patients provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palumbo, P., Cannizzaro, E., Bruno, F. et al. Coronary artery disease (CAD) extension-derived risk stratification for asymptomatic diabetic patients: usefulness of low-dose coronary computed tomography angiography (CCTA) in detecting high-risk profile patients. Radiol med 125, 1249–1259 (2020). https://doi.org/10.1007/s11547-020-01204-z

Download citation

Keywords

  • Type-2 diabetes mellitus
  • Asymptomatic
  • Low-dose
  • CCTA
  • Risk stratification