Skip to main content

Advertisement

Log in

European trends in radiology: investigating factors affecting the number of examinations and the effective dose

  • MEDICAL PHYSICS
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

The advances in technology have led to a growing trend in population exposure to radiation emerging from the invention of high-dose procedures. It is, for example, estimated that annually 1.2% of cancers are induced by radiological scans in Norway. This study aims to investigate and discuss the frequency and dose trends of radiological examinations in Europe. European Commission (EC) launched projects to gain information for medical exposures in 2004 and 2011. In this study, the European Commission Radiation Protection (RP) reports No. 154 and 180 have been reviewed. The RP 154 countries’ data were extracted from both reports, and the average variation trend of the number of examinations and effective doses were studied. According to the results, plain radiography and fluoroscopy witnessed a reduction in the frequency and effective dose per examination. Nevertheless, European collective dose encountered an average increase of 23%, which resulted from a growing tendency for implementation of high-dose procedures such as CT scans and interventional examinations. It is worth noting that most of the CT procedures have undergone an increase in effective dose per examination. Although demand and dose per examination in some radiological procedures (such as intravenous urography (IVU) have been reduced, population collective dose is still rising due to the increasing demand for CT scan procedures. Even though the individual risks are not considerable, it can, in a large scale, threaten the health of the people at the present time. Due to this fact, better justification should be addressed so as to reduce population exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gocht H (1921) Die Röntgen-Literatur. Enke Verlag Stuttgart

  2. Hart D, Wall B, Hillier M, Shrimpton P (2010) Frequency and collective dose for medical and dental X-ray examinations in the UK, 2008. Health Protection Agency, London

    Google Scholar 

  3. Radiation U (2010) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2008 report to the General Assembly, with scientific annexes. New York: United Nations

  4. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263

    PubMed  Google Scholar 

  5. Regulla DF, Eder H (2005) Patient exposure in medical X-ray imaging in Europe. Radiat Prot Dosim 114(1–3):11–25

    Google Scholar 

  6. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    CAS  PubMed  Google Scholar 

  7. Berdon WE, Slovis TL (2002) Where we are since ALARA and the series of articles on CT dose in children and risk of long-term cancers: what has changed? Pediatr Radiol 32(10):699

    PubMed  Google Scholar 

  8. Oikarinen H, Meriläinen S, Pääkkö E, Karttunen A, Nieminen MT, Tervonen O (2009) Unjustified CT examinations in young patients. Eur Radiol 19(5):1161

    PubMed  Google Scholar 

  9. Hall E, Brenner D (2008) Cancer risks from diagnostic radiology. Br J Radiol 81(965):362–378

    CAS  PubMed  Google Scholar 

  10. de González AB, Mahesh M, Kim K-P, Bhargavan M, Lewis R, Mettler F et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077

    PubMed Central  Google Scholar 

  11. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB et al (2013) Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360

    PubMed  PubMed Central  Google Scholar 

  12. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    PubMed  PubMed Central  Google Scholar 

  13. de Gonzalez AB, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351

    Google Scholar 

  14. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA 307(22):2400–2409

    CAS  PubMed  Google Scholar 

  15. Valentin J (2007) The 2007 recommendations of the international commission on radiological protection. Elsevier, Oxford

    Google Scholar 

  16. Skrk D, Zontar D (2013) Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia. Radiol Oncol 47(3):304–310

    PubMed  PubMed Central  Google Scholar 

  17. Teles P, Carmen de Sousa M, Paulo G, Santos J, Pascoal A, Cardoso G et al (2012) Estimation of the collective dose in the Portuguese population due to medical procedures in 2010. Radiat Protect Dosim 154(4):446–458

    Google Scholar 

  18. Costa F, Teles P, Nogueira A, Barreto A, Santos AI, Carvalho A et al (2015) Estimation of the collective ionizing dose in the Portuguese population for the years 2011 and 2012, due to nuclear medicine exams. Revista espanola de medicina nuclear e imagen molecular 34(1):1–8

    CAS  PubMed  Google Scholar 

  19. Wall B, Hart D, Mol H, Lecluyse A, Aroua A, Trueb P (2008) European guidance on estimating population doses from medical X-ray procedures, vol 123. Radiation Protection Division, Health Protection Agency Oxfordshire: European Commission: Energy

  20. Commission E (2014) Radiation Protection No. 180. Medical radiation exposure of the european population

  21. McDonald RJ, Schwartz KM, Eckel LJ, Diehn FE, Hunt CH, Bartholmai BJ et al (2015) The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 22(9):1191–1198

    PubMed  Google Scholar 

  22. Børretzen I, Lysdahl KB, Olerud HM (2007) Diagnostic radiology in Norway—trends in examination frequency and collective effective dose. Radiat Prot Dosim 124(4):339–347

    Google Scholar 

  23. Thierry-Chef I, Simon SL, Weinstock RM, Kwon D, Linet MS (2011) Reconstruction of absorbed doses to fibroglandular tissue of the breast of women undergoing mammography (1960 to the present). Radiat Res 177(1):92–108

    PubMed  PubMed Central  Google Scholar 

  24. Melo DR, Miller DL, Chang L, Moroz B, Linet MS, Simon SL (2016) Organ doses from diagnostic medical radiography—trends over eight decades (1930 to 2010). Health Phys 111(3):235–255

    CAS  PubMed  Google Scholar 

  25. Vano E (2005) ICRP recommendations on ‘Managing patient dose in digital radiology’. Radiat Prot Dosim 114(1–3):126–130

    CAS  Google Scholar 

  26. Uffmann M, Schaefer-Prokop C (2009) Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol 72(2):202–208

    PubMed  Google Scholar 

  27. Unit RH (2004) Guidance notes on radiation protection for diagnostic radiology. Department of Health

  28. Gibson DJ, Davidson RA (2012) Exposure creep in computed radiography: a longitudinal study. Acad Radiol 19(4):458–462

    PubMed  Google Scholar 

  29. Vano E, Fernández JM, Ten JI, Prieto C, Gonzalez L, Rodriguez R et al (2007) Transition from screen-film to digital radiography: evolution of patient radiation doses at projection radiography. Radiology 243(2):461–466

    PubMed  Google Scholar 

  30. Young KC, Oduko JM (2016) Radiation doses received in the United Kingdom breast screening programme in 2010 to 2012. Br J Radiol 89(1058):20150831

    PubMed  PubMed Central  Google Scholar 

  31. Ranger NT, Lo JY, Samei E (2010) A technique optimization protocol and the potential for dose reduction in digital mammography. Med Phys 37(3):962–969

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Robinson M, Kotre C (2008) Trends in compressed breast thickness and radiation dose in breast screening mammography. Br J Radiol 81(963):214–218

    CAS  PubMed  Google Scholar 

  33. Du X, Yu N, Zhang Y, Wang J (2017) The relationship of the mean glandular dose with compressed breast thickness in mammography. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.03.10

    Google Scholar 

  34. Helvie M, Chan H-P, Adler D, Boyd P (1994) Breast thickness in routine mammograms: effect on image quality and radiation dose. AJR Am J Roentgenol 163(6):1371–1374

    CAS  PubMed  Google Scholar 

  35. Rockey D, Paulson E, De Niedzwiecki, Davis W, Bosworth H, Sanders L et al (2005) Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison. Lancet 365(9456):305–311

    CAS  PubMed  Google Scholar 

  36. Karasick S, Ehrlich SM, Levin DC, Harford RJ, Rosetti EF, Ricci JA et al (1995) Trends in use of barium enema examination, colonoscopy, and sigmoidoscopy: is use commensurate with risk of disease? Radiology 195(3):777–784

    CAS  PubMed  Google Scholar 

  37. Andrus JG, Dolan RW, Anderson TD (2005) Transnasal esophagoscopy: a high-yield diagnostic tool. Laryngoscope 115(6):993–996

    PubMed  Google Scholar 

  38. Boyajian DA, Margulis AR (2008) The GI fluoroscopy suite in the early twenty-first century. Abdom Imag 33(2):200–206

    Google Scholar 

  39. Olerud H, Saxebøl G (1997) Diagnostic radiology in Norway from 1983 to 1993-examination frequency and collective effective dose to patients. Radiat Prot Dosim 74(4):247–260

    CAS  Google Scholar 

  40. Choi KS, Suh M (2014) Screening for gastric cancer: the usefulness of endoscopy. Clin Endosc 47(6):490

    PubMed  PubMed Central  Google Scholar 

  41. Bouzas-Mosquera A, Peteiro J, Broullón FJ, Calviño-Santos R, Mosquera VX, Barbeito-Caamaño C et al (2015) Trends in referral patterns, invasive management, and mortality in elderly patients referred for exercise stress testing. Eur J Intern Med 26(10):787–791

    PubMed  Google Scholar 

  42. Meinel FG, Bayer RR II, Zwerner PL, De Cecco CN, Schoepf UJ, Bamberg F (2015) Coronary computed tomographic angiography in clinical practice: state of the art. Radiol Clin 53(2):287–296

    Google Scholar 

  43. Greil GF, Powell AJ, Gildein HP, Geva T (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39(2):335–341

    PubMed  Google Scholar 

  44. Harbaugh RE, Schlusselberg DS, Jeffery R, Hayden S, Cromwell LD, Pluta D (1992) Three-dimensional computerized tomography angiography in the diagnosis of cerebrovascular disease. J Neurosurg 76(3):408–414

    CAS  PubMed  Google Scholar 

  45. Mohapatra A, Vemana G, Bhayani S, Baty J, Vetter J, Strope SA (2016) Trends in the utilization of imaging for upper tract urothelial carcinoma. Urol Oncol 34(5):236.e23–236.e28

    Google Scholar 

  46. Kawashima A, Glockner JF, King BF (2003) CT urography and MR urography. Radiol Clin 41(5):945–961

    Google Scholar 

  47. Pfister S, Deckart A, Laschke S, Dellas S, Otto U, Buitrago C et al (2003) Unenhanced helical computed tomography vs intravenous urography in patients with acute flank pain: accuracy and economic impact in a randomized prospective trial. Eur Radiol 13(11):2513–2520

    CAS  PubMed  Google Scholar 

  48. Bhat GA, Reshi TA, Rashid A (2016) Comparison of magnetic resonance urography (MRU) with intravenous pyelography (IVP) in evaluation of patients with hydronephrosis on ultrasonography due to pelvi-ureteric junction obstruction. Int J Clin Med 7(05):353

    Google Scholar 

  49. Rao VM, Levin DC, Parker L, Frangos AJ, Sunshine JH (2011) Trends in utilization rates of the various imaging modalities in emergency departments: nationwide Medicare data from 2000 to 2008. J Am Coll Radiol 8(10):706–709

    PubMed  Google Scholar 

  50. Kocher KE, Meurer WJ, Fazel R, Scott PA, Krumholz HM, Nallamothu BK (2011) National trends in use of computed tomography in the emergency department. Ann Emerg Med 58(5):452–462

    PubMed  Google Scholar 

  51. Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M, Gould R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169(22):2078–2086

    PubMed  PubMed Central  Google Scholar 

  52. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32(4):228–231

    PubMed  Google Scholar 

  53. Lewis M, Edyvean S (2005) Patient dose reduction in CT. Br J Radiol 78(934):880–883

    CAS  PubMed  Google Scholar 

  54. Thornton FJ, Paulson EK, Yoshizumi TT, Frush DP, Nelson RC (2003) Single versus multi-detector row CT. Acad Radiol 10(4):379–385

    Google Scholar 

  55. Lewis M (2005) Radiation dose issues in multi-slice CT sccaning. ImPACT technology update

  56. McCollough CH, Chen GH, Kalender W, Leng S, Samei E, Taguchi K et al (2012) Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology 264(2):567–580

    PubMed  PubMed Central  Google Scholar 

  57. Malone J (2008) New ethical issues for radiation protection in diagnostic radiology. Radiat Prot Dosim 129(1–3):6–12

    CAS  Google Scholar 

  58. Radiation Protection in Medicine: Setting the Scene for the Next Decade (2015). In: Proceedings of an international conference on World Health Organization

  59. Computed tomography (CT) exams [Internet] (2017). https://www.oecd-ilibrary.org/content/data/3c994537-en. Accessed 12 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hosein Zare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masjedi, H., Zare, M.H., Keshavarz Siahpoush, N. et al. European trends in radiology: investigating factors affecting the number of examinations and the effective dose. Radiol med 125, 296–305 (2020). https://doi.org/10.1007/s11547-019-01109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-01109-6

Keywords

Navigation