Skip to main content

Percutaneous microwave ablation of renal angiomyolipomas in tuberous sclerosis complex to improve the quality of life: preliminary experience in an Italian center

Abstract

Aim

To evaluate efficacy, safety and quality of life of the patients with renal angiomyolipomas (AMLs) associated with tuberous sclerosis complex (TSC) treated with percutaneous microwave ablation (MWA).

Materials and methods

Nine patients (7 females and 2 males; mean age 27.6 years, range 23–34), with 10 renal AMLs with a mean size of 6.3 cm (range 4.5–8.5) were treated with image-guided percutaneous MWA. Indications for treatment were the risk of rupture/hemorrhage due to size greater than 4 cm and symptomatology; in one case, a previous hemorrhage was the indication for treatment. During follow-up, the volume of the ablated AMLs and its relationship with the relief of symptoms were registered. Technical and clinical success, safety, and quality of life (QOL) were evaluated in a mean follow-up of 9 months (range 3–12).

Results

Technical success was obtained in all cases. Clinical success was obtained in all cases; the volume of the ablated AMLs was not related with symptoms relief; all patients referred a significant improvement in their QOL, with a regularization of daily activities. There were no major procedural complications or delayed adverse events. A small self-limited post-procedural subcapsular hematoma was registered. Post-ablation syndrome was registered in 5 cases and was self-limited in all cases.

Conclusions

Symptoms relief, lower risk of hemorrhage and a normalized QOL were obtained in all patients with a safe and mini-invasive procedure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Warncke JC, Brodie KE, Grantham EC, Catarinicchia SP, Tong S, Kondo KL et al (2017) Pediatric renal angiomyolipomas in tuberous sclerosis complex. J Urol 197(2):500–506. https://doi.org/10.1016/j.juro.2016.09.082

    Article  PubMed  Google Scholar 

  2. Flum AS, Hamoui N, Said MA, Yang XJ, Casalino DD, McGuire BB et al (2016) Update on the diagnosis and management of renal angiomyolipoma. J Urol 195(4 Pt 1):834–846. https://doi.org/10.1016/j.juro.2015.07.126

    Article  PubMed  Google Scholar 

  3. Oesterling JE, Fishman EK, Goldman SM, Marshall FF (1986) The management of renal angiomyolipoma. J Urol 135(6):1121–1124

    Article  CAS  PubMed  Google Scholar 

  4. Sooriakumaran P, Gibbs P, Coughlin G, Attard V, Elmslie F, Kingswood C et al (2010) Angiomyolipomata: challenges, solutions, and future prospects based on over 100 cases treated. BJU Int 105(1):101–106. https://doi.org/10.1111/j.1464-410X.2009.08649.x

    Article  PubMed  Google Scholar 

  5. Sivalingam S, Nakada SY (2013) Contemporary minimally invasive treatment options for renal angiomyolipomas. Curr Urol Rep 14(2):147–153. https://doi.org/10.1007/s11934-013-0311-3

    Article  PubMed  Google Scholar 

  6. Kiefer RM, Stavropoulos SW (2017) The role of interventional radiology techniques in the management of renal angiomyolipomas. Curr Urol Rep 18(5):36. https://doi.org/10.1007/s11934-017-0687-6

    Article  PubMed  Google Scholar 

  7. Laeseke PF, Lee FT Jr, Sampson LA, van der Weide DW, Brace CL (2009) Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol 20(9):1224–1229. https://doi.org/10.1016/j.jvir.2009.05.029

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cristescu M, Abel EJ, Wells S, Ziemlewicz TJ, Hedican SP, Lubner MG et al (2016) Percutaneous microwave ablation of renal angiomyolipomas. Cardiovasc Intervent Radiol 39(3):433–440. https://doi.org/10.1007/s00270-015-1201-5

    Article  PubMed  Google Scholar 

  9. Ierardi AM, Savasi V, Angileri SA, Petrillo M, Sbaraini S, Pinto A et al (2018) Percutaneous high frequency microwave ablation of uterine fibroids: systematic review. Biomed Res Int 2018:2360107. https://doi.org/10.1155/2018/2360107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malloy PC, Grassi CJ, Kundu S, Gervais DA, Miller DL, Osnis RB et al (2009) Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol 20(7 Suppl):S240–S249. https://doi.org/10.1016/j.jvir.2008.11.027

    Article  PubMed  Google Scholar 

  11. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30(6):473–483

    Article  PubMed  Google Scholar 

  12. Carrafiello G, Laganà D, Ianniello A, Dionigi G, Novario R, Recaldini C et al (2007) Post-radiofrequency ablation syndrome after percutaneous radiofrequency of abdominal tumours: one centre experience and review of published works. Australas Radiol 51(6):550–554

    Article  CAS  PubMed  Google Scholar 

  13. National Institute of Cancer. Common Terminology Criteria for Adverse Events (CTCAE) v5.0 – November 27, 2017

  14. Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL (2017) Cirse quality assurance document and standards for classification of complications: the cirse classification system. Cardiovasc Intervent Radiol 40(8):1141–1146. https://doi.org/10.1007/s00270-017-1703-4

    Article  CAS  PubMed  Google Scholar 

  15. Dixon BP, Hulbert JC, Bissler JJ (2011) Tuberous sclerosis complex renal disease. Nephron Exp Nephrol 118(1):e15–e20. https://doi.org/10.1159/000320891

    Article  Google Scholar 

  16. Shepherd CW, Gomez MR, Lie JT, Crowson CS (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66(8):792–796

    Article  CAS  PubMed  Google Scholar 

  17. O’Callaghan FJ, Harris T, Joinson C, Bolton P, Noakes M, Presdee D et al (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child 89(6):530–533

    Article  PubMed  PubMed Central  Google Scholar 

  18. Floridi C, De Bernardi I, Fontana F, Muollo A, Ierardi AM, Agostini A et al (2014) Microwave ablation of renal tumors: state of the art and development trends. Radiol Med 119(7):533–540. https://doi.org/10.1007/s11547-014-0426-8

    Article  PubMed  Google Scholar 

  19. Campbell SC, Novick AC, Belldegrun A, Blute ML, Chow GK, Derweesh IH et al (2009) Guideline for management of the clinical T1 renal mass. J Urol 182(4):1271–1279. https://doi.org/10.1016/j.juro.2009.07.004

    Article  PubMed  Google Scholar 

  20. Solazzo SA, Liu Z, Lobo SM, Ahmed M, Hines-Peralta AU, Lenkinski RE et al (2005) Radiofrequency ablation: importance of background tissue electrical conductivity–an agar phantom and computer modeling study. Radiology 236(2):495–502

    Article  PubMed  Google Scholar 

  21. Shi F, Li G, Zhou Z, Xu R, Li W, Zhuang W et al (2017) Microwave ablation versus radiofrequency ablation for the treatment of pulmonary tumors. Oncotarget 8(65):109791–109798. https://doi.org/10.18632/oncotarget.22308

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gregory SM, Anderson CJ, Patel U (2013) Radiofrequency ablation of large renal angiomyolipoma: median-term follow-up. Cardiovasc Intervent Radiol 36(3):682–689. https://doi.org/10.1007/s00270-012-0483-0

    Article  CAS  PubMed  Google Scholar 

  23. Hodgson S (2003) Tuberous sclerosis complex: from basic science to clinical phenotypes. International review of child neurology series. Paolo Curatolo (Ed), London, Mac Keith Press

  24. Castle SM, Gorbatiy V, Ekwenna O, Young E, Leveillee RJ (2012) Radiofrequency ablation (RFA) therapy for renal angiomyolipoma (AML): an alternative to angio-embolization and nephron-sparing surgery. BJU Int 109(3):384–387. https://doi.org/10.1111/j.1464-410X.2011.10376.x

    Article  PubMed  Google Scholar 

  25. Gregory SM, Anderson CJ, Patel U (2013) Radiofrequency ablation of large renal angiomyolipoma: median-term follow-up. Cardiovasc Intervent Radiol 36(3):682–689. https://doi.org/10.1007/s00270-012-0483-0

    Article  CAS  PubMed  Google Scholar 

  26. Han ZY, Liang P, Yu XL, Cheng ZG, Liu FY, Yu J (2015) Ultrasound-guided percutaneous microwave ablation of sporadic renal angiomyolipoma: preliminary results. Acta Radiol 56(1):56–62. https://doi.org/10.1177/0284185113519357

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Carrafiello.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ierardi, A.M., Petrillo, M., Coppola, A. et al. Percutaneous microwave ablation of renal angiomyolipomas in tuberous sclerosis complex to improve the quality of life: preliminary experience in an Italian center. Radiol med 124, 176–183 (2019). https://doi.org/10.1007/s11547-018-0967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-018-0967-3

Keywords

  • Angiomyolipoma
  • Tuberous sclerosis
  • Quality of life
  • Microwaves