La radiologia medica

, Volume 123, Issue 7, pp 498–506 | Cite as

Focal breast lesion characterization according to the BI-RADS US lexicon: role of a computer-aided decision-making support

  • Tommaso Vincenzo Bartolotta
  • Alessia Orlando
  • Vito Cantisani
  • Domenica Matranga
  • Raffele Ienzi
  • Alessandra Cirino
  • Francesco Amato
  • Maria Laura Di Vittorio
  • Massimo Midiri
  • Roberto Lagalla


The breast imaging-reporting and data system (BI-RADS) lexicon was first developed in 2003 by the American College of Radiology (ACR), in an attempt to standardize image interpretation, reporting and teaching breast imaging, including ultrasound (US) [1]. Despite this validation, the variability in the assessment of focal breast lesions (FBLs) with the use of BI-RADS US lexicon is still an issue, in particular for some of the descriptors, such as margin and echo pattern of lesion [2, 3, 4, 5].

In this peculiar setting, evidence shows that computer-aided image analysis may be effective in improving the radiologist’s assessment of FBLs. Computer-aided classification systems work in three phases: image processing, segmentation and feature extraction and they may be classified according to the algorithms employed in each phase [6, 7].

According to some authors, these systems can potentially improve breast lesion classification, both in terms of performance and operator...


Breast Ultrasonography Neoplasms BI-RADS Diagnosis Computer aided 


Compliance with ethical standards

Conflict of interest

Prof. Tommaso Vincenzo Bartolotta has lectured for Samsung. Doctor Vito Cantisani has lectured for Samsung.

Ethical approval

The authors have read and complied with the policy of the journal on ethical consent.


  1. 1.
    D’Orsi CJ, Bassett LW, Berg WA et al (2003) Breast imaging reporting and data system: ACR BI-RADS, 4th edn. American College of Radiology, RestonGoogle Scholar
  2. 2.
    Mendelson EB, Böhm-Vélez M, Berg WA, et al (2013) ACR BI-RADS® Ultrasound. In: ACR BI-RADS® atlas, breast imaging reporting and data system. American College of Radiology, RestonGoogle Scholar
  3. 3.
    Mercado CL (2014) BI-RADS update. Radiol Clin N Am 52(3):481–487CrossRefPubMedGoogle Scholar
  4. 4.
    Hong AS, Rosen EL, Soo MS, Baker JA (2005) BI-RADS for sonography: positive and negative predictive values of sonographic features. Am J Roentgenol 184(4):1260–1265CrossRefGoogle Scholar
  5. 5.
    Raza S, Goldkamp AL, Chikarmane SA, Birdwell RL (2010) US of breast masses categorized as BI-RADS 3, 4, and 5: pictorial review of factors influencing clinical management. Radiographics 30(5):1199–1213CrossRefPubMedGoogle Scholar
  6. 6.
    Jalalian A, Mashohor SB, Mahmud HR, Saripan MI, Ramli AR, Karasfi B (2013) Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 37(3):420–426CrossRefPubMedGoogle Scholar
  7. 7.
    Wengert GJ, Helbich TH, Woitek R et al (2016) Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment. Eur Radiol 26(11):3917–3922CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Buchbinder SS, Leichter IS, Lederman RB, Novak B, Bamberger PN, Sklair-Levy M, Yarmish G, Fields SI (2004) Computer-aided classification of BI-RADS category 3 breast lesions. Radiology 230(3):820–823CrossRefPubMedGoogle Scholar
  9. 9.
    Shen WC, Chang RF, Moon WK (2007) Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS). Ultrasound Med Biol 33(11):1688–1698CrossRefPubMedGoogle Scholar
  10. 10.
    Kim K, Song MK, Kim EK, Yoon JH (2017) Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist. Ultrasonography 36(1):3–9CrossRefPubMedGoogle Scholar
  11. 11.
    Lee JH, Seong YK, Chang CH, Ko EY, Cho BH, Ku J, et al (2013) Computer-aided lesion diagnosis in B-mode ultrasound by border irregularity and multiple sonographic features. In: Proc. SPIE 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 86701; 2013 Feb 28; Lake Buena Vista, FL, USAGoogle Scholar
  12. 12.
    Sedgwick E (2011) The breast ultrasound lexicon: breast imaging reporting and data system (BI-RADS). Semin Roentgenol 46(4):245–251CrossRefPubMedGoogle Scholar
  13. 13.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845CrossRefPubMedGoogle Scholar
  14. 14.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  15. 15.
    Hooley RJ, Scoutt LM, Philpotts LE (2013) Breast ultrasonography: state of the art. Radiology 268(3):642–659CrossRefPubMedGoogle Scholar
  16. 16.
    Abdullah N, Mesurolle B, El-Khoury M, Kao E (2009) Breast imaging reporting and data system lexicon for US: interobserver agreement for assessment of breast masses. Radiology 252(3):665–672CrossRefPubMedGoogle Scholar
  17. 17.
    Bartolotta TV, Ienzi R, Cirino A et al (2011) Characterisation of indeterminate focal breast lesions on grey-scale ultrasound: role of ultrasound elastography. Radiol Med (Torino) 116(7):1027–1038CrossRefGoogle Scholar
  18. 18.
    Gilbert FJ, Astley SM, Gillan MG et al (2008) Single reading with computer-aided detection for screening mammography. N Engl J Med 359(16):1675–1684CrossRefPubMedGoogle Scholar
  19. 19.
    Samulski M, Hupse R, Boetes C, Mus RD, den Heeten GJ, Karssemeijer N (2010) Using computer-aided detection in mammography as a decision support. Eur Radiol 20(10):2323–2330CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hupse R, Samulski M, Lobbes M et al (2013) Standalone computer-aided detection compared to radiologists’ performance for the detection of mammographic masses. Eur Radiol 23(1):93–100CrossRefPubMedGoogle Scholar
  21. 21.
    Bitencourt AG, Graziano L, Osório CA et al (2016) MRI features of mucinous cancer of the breast: correlation with pathologic findings and other imaging methods. Am J Roentgenol 206(2):238–246CrossRefGoogle Scholar
  22. 22.
    Tan H, Zhang S, Liu H et al (2012) Imaging findings in phyllodes tumors of the breast. Eur J Radiol 81(1):e62–e69. CrossRefPubMedGoogle Scholar
  23. 23.
    Lazarus E, Mainiero MB, Schepps B, Koelliker SL, Livingston LS (2006) BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology 239(2):385–391CrossRefPubMedGoogle Scholar
  24. 24.
    Lee HJ, Kim EK, Kim MJ et al (2008) Observer variability of breast imaging reporting and data system (BI-RADS) for breast ultrasound. Eur J Radiol 65(2):293–298CrossRefPubMedGoogle Scholar
  25. 25.
    Dorrius MD, Jansen-van der Weide MC, van Ooijen PM, Pijnappel RM, Oudkerk M (2011) Computer-aided detection in breast MRI: a systematic review and meta-analysis. Eur Radiol 21(8):1600–1608CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Timmers JM, van Doorne-Nagtegaal HJ, Zonderland HM et al (2012) The breast imaging reporting and data system (BI-RADS) in the Dutch breast cancer screening programme: its role as an assessment and stratification tool. Eur Radiol 22(8):1717–1723CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Tommaso Vincenzo Bartolotta
    • 1
  • Alessia Orlando
    • 1
  • Vito Cantisani
    • 2
  • Domenica Matranga
    • 3
  • Raffele Ienzi
    • 1
  • Alessandra Cirino
    • 1
  • Francesco Amato
    • 1
  • Maria Laura Di Vittorio
    • 1
  • Massimo Midiri
    • 1
  • Roberto Lagalla
    • 1
  1. 1.Department of Radiology Di.Bi.MEDPoliclinico P. Giaccone-University of PalermoPalermoItaly
  2. 2.Department of Radiology, Oncology, and Anatomy PathologyPoliclinico Umberto-University SapienzaRomeItaly
  3. 3.Department of Sciences for Health Promotion and Mother, Child CarePoliclinico P. Giaccone-University of PalermoPalermoItaly

Personalised recommendations