La radiologia medica

, Volume 123, Issue 5, pp 331–337 | Cite as

Blood-threshold CMR volume analysis of functional univentricular heart

  • Francesco Secchi
  • Marco Alì
  • Marcello Petrini
  • Francesca Romana Pluchinotta
  • Andrea Cozzi
  • Mario Carminati
  • Francesco Sardanelli



To validate a blood-threshold (BT) segmentation software for cardiac magnetic resonance (CMR) cine images in patients with functional univentricular heart (FUH).

Materials and methods

We evaluated retrospectively 44 FUH patients aged 25 ± 8 years (mean ± standard deviation). For each patient, the epicardial contour of the single ventricle was manually segmented on cine images by two readers and an automated BT algorithm was independently applied to calculate end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac mass (CM). Aortic flow analysis (AFA) was performed on through-plane images to obtain forward volumes and used as a benchmark. Reproducibility was tested in a subgroup of 24 randomly selected patients. Wilcoxon, Spearman, and Bland–Altman statistics were used.


No significant difference was found between SV (median 57.7 ml; interquartile range 47.9–75.6) and aortic forward flow (57.4 ml; 48.9–80.4) (p = 0.123), with a high correlation (r = 0.789, p < 0.001). Intra-reader reproducibility was 86% for SV segmentation, and 96% for AFA. Inter-reader reproducibility was 85 and 96%, respectively.


The BT segmentation provided an accurate and reproducible assessment of heart function in FUH patients.


Congenital heart disease Univentricular heart Cardiac magnetic resonance Ventricular function Image segmentation 



This study was supported by local research funds of the IRCCS Policlinico San Donato, a Clinical Research Hospital partially funded by the Italian Ministry of Health.

Compliance with ethical standards

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

The Ethical Committee of IRCCS Ospedale San Raffaele approved the protocol UH_01 on July 14, 2016. Register 115/INT/2016.

Conflict of interest

F Secchi has been sponsored to congresses by Bracco Imaging SpA (Milan, Italy). F. Sardanelli is on the speaker’s bureau for Bracco Imaging SpA (Milan, Italy) and received research grants from Bayer Healthcare (Berlin, Germany)


  1. 1.
    Khairy P, Poirier N, Mercier L-A (2007) Univentricular heart. Circulation 115:800–812CrossRefPubMedGoogle Scholar
  2. 2.
    Frescura C, Thiene G (2014) The new concept of univentricular heart. Front Pediatr 2:62CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900CrossRefPubMedGoogle Scholar
  4. 4.
    Frommelt PC, Gerstenberger E, Cnota JF et al (2014) Impact of initial shunt type on cardiac size and function in children with single right ventricle anomalies before the Fontan procedure: the single ventricle reconstruction extension trial. J Am Coll Cardiol 64:2026–2035CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rao PS (2015) Fontan operation: indications, short and long term outcomes. Indian J Pediatr 82:1147–1156CrossRefPubMedGoogle Scholar
  6. 6.
    Yoo SJ, Prsa M, Schantz D et al (2014) MR assessment of abdominal circulation in Fontan physiology. Int J Cardiovasc Imaging 30:1065–1072CrossRefPubMedGoogle Scholar
  7. 7.
    Kutty S, Rathod RH, Danford DA, Celermajer DS (2015) Role of imaging in the evaluation of single ventricle with the Fontan palliation. Heart 102:174–183CrossRefPubMedGoogle Scholar
  8. 8.
    Lewis G, Thorne S, Clift P, Holloway B (2015) Cross-sectional imaging of the Fontan circuit in adult congenital heart disease. Clin Radiol 70:667–675CrossRefPubMedGoogle Scholar
  9. 9.
    Greenberg SB, Bhutta ST (2008) A dual contrast injection technique for multidetector computed tomography angiography of Fontan procedures. Int J Cardiovasc Imaging 24:345–348CrossRefPubMedGoogle Scholar
  10. 10.
    Walsh M, Noga M, Rutledge J (2015) Cumulative radiation exposure in pediatric patients with congenital heart disease. Pediatr Cardiol 36:289–294CrossRefPubMedGoogle Scholar
  11. 11.
    Di Cesare E, Cademartiri F, Carbone I et al (2013) Clinical indications for the use of cardiac MRI. By the SIRM Study Group on Cardiac Imaging. Radiol Med 118:752–798CrossRefPubMedGoogle Scholar
  12. 12.
    Secchi F, Di Leo G, Papini GDE et al (2011) Cardiac magnetic resonance: impact on diagnosis and management of patients with congenital cardiovascular disease. Clin Radiol 66:720–725CrossRefPubMedGoogle Scholar
  13. 13.
    Lu JC, Dorfman AL, Attili AK et al (2012) Evaluation with cardiovascular MR imaging of baffles and conduits used in palliation or repair of congenital heart disease. Radio Graph 32:E107–E127Google Scholar
  14. 14.
    Secchi F, Resta EC, Piazza L et al (2014) Cardiac magnetic resonance before and after percutaneous pulmonary valve implantation. Radiol Med 119:400–407CrossRefPubMedGoogle Scholar
  15. 15.
    Secchi F, Resta EC, Cannao PM et al (2015) Four-year cardiac magnetic resonance (CMR) follow-up of patients treated with percutaneous pulmonary valve stent implantation. Eur Radiol 25:3606–3613CrossRefPubMedGoogle Scholar
  16. 16.
    Rathod RH, Prakash A, Kim YY et al (2014) Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging 7:502–509CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ghelani SJ, Harrild DM, Gauvreau K et al (2015) Comparison between echocardiography and cardiac magnetic resonance imaging in predicting transplant-free survival after the Fontan operation. Am J Cardiol 116:1132–1138CrossRefPubMedGoogle Scholar
  18. 18.
    Secchi F, Resta EC, Di Leo G et al (2014) Segmentation of cardiac magnetic resonance cine images of single ventricle: including or excluding the accessorial ventricle? Int J Cardiovasc Imaging 30:1117–1124CrossRefPubMedGoogle Scholar
  19. 19.
    Di Leo G, D’Angelo ID, Alì M et al (2017) Intra- and inter-reader reproducibility of blood flow measurements on the ascending aorta and pulmonary artery using cardiac magnetic resonance. Radiol Med 122:179–185CrossRefPubMedGoogle Scholar
  20. 20.
    Cawley PJ, Maki JH, Otto CM (2009) Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation 119:468–478CrossRefPubMedGoogle Scholar
  21. 21.
    van der Geest RJ, Niezen RA, van der Wall EE et al (1998) Automated measurement of volume flow in the ascending aorta using MR velocity maps: evaluation of inter- and intraobserver variability in healthy volunteers. J Comput Assist Tomogr 22:904–911CrossRefPubMedGoogle Scholar
  22. 22.
    Attili AK, Schuster A, Nagel E et al (2010) Quantification in cardiac MRI: advances in image acquisition and processing. Int J Cardiovasc Imaging 26(Suppl 1):27–40CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–184CrossRefPubMedGoogle Scholar
  24. 24.
    Sardanelli F, Quarenghi M, Di Leo G et al (2008) Segmentation of cardiac cine MR images of left and right ventricles: interactive semiautomated methods and manual contouring by two readers with different education and experience. J Magn Reson Imaging 27:785–792CrossRefPubMedGoogle Scholar
  25. 25.
    Varga-Szemes A, Muscogiuri G, Schoepf UJ et al. (2015) Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method. Eur Radiol 26:1503–1511CrossRefPubMedGoogle Scholar
  26. 26.
    Chuang ML, Gona P, Hautvast GLTF et al (2012) Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 5:1115–1123CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Weinsaft JW, Cham MD, Janik M et al (2008) Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction. Int J Cardiol 126:359–365CrossRefPubMedGoogle Scholar
  28. 28.
    Papavassiliu T, Kühl HP, Schröder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64CrossRefPubMedGoogle Scholar
  29. 29.
    Jaspers K, Freling HG, Van Wijk K et al (2013) Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm. Int J Cardiovasc Imaging 29:617–623CrossRefPubMedGoogle Scholar
  30. 30.
    Jeltsch M, Ranft S, Klass O et al (2008) Evaluation of accordance of magnetic resonance volumetric and flow measurements in determining ventricular stroke volume in cardiac patients. Acta Radiol 49:530–539CrossRefPubMedGoogle Scholar
  31. 31.
    Gatehouse PD, Rolf MP, Graves MJ et al (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Codella NCF, Cham MD, Wong R et al (2010) Rapid and accurate left ventricular chamber quantification using a novel CMR segmentation algorithm: a clinical validation study. J Magn Reson Imaging 31:845–853CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  1. 1.Unit of RadiologyIRCCS Policlinico San DonatoSan Donato MilaneseItaly
  2. 2.Integrative Biomedical ResearchUniversità degli Studi di MilanoMilanItaly
  3. 3. School in RadiodiagnosticsUniversità degli Studi di MilanoMilanItaly
  4. 4.Department of Pediatric Cardiology and Adult Cingenital Heart DiseaseIRCCS Policlinico San DonatoSan Donato MilaneseItaly
  5. 5.Corso di Laurea in Medicina e ChirurgiaUniversità degli Studi di MilanoMilanItaly
  6. 6.Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoSan Donato MilaneseItaly

Personalised recommendations