Skip to main content
Log in

Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry

  • CARDIAC RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to assess whether the identification of pathological myocardial enhancement at multiphase postmortem computed tomography angiography was correlated with increased levels of troponin T and I in postmortem serum from femoral blood as well as morphological findings of myocardial ischemia. We further aimed to investigate whether autopsy cases characterized by increased troponin T and I concentrations as well as morphological findings of myocardial ischemia were also characterized by pathological myocardial enhancement at multiphase postmortem computed tomography angiography.

Materials and methods

Two different approaches were used. In one, 40 forensic autopsy cases that had pathological enhancement of the myocardium (mean Hounsfield units ≥95) observed at postmortem angiography were retrospectively selected. In the second approach, 40 forensic autopsy cases that had a cause of death attributed to acute myocardial ischemia were retrospectively selected.

Results

The preliminary results seem to indicate that the identification of a pathological enhancement of the myocardium at postmortem angiography is associated with the presence of increased levels of cardiac troponins in postmortem serum and morphological findings of ischemia. Analogously, a pathological enhancement of the myocardium at postmortem angiography can be retrospectively found in the great majority of autopsy cases characterized by increased cardiac troponin levels in postmortem serum and morphological findings of myocardial ischemia.

Conclusions

Multiphase postmortem computed tomography angiography is a useful tool in the postmortem setting for investigating ischemically damaged myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vinen J (2010) Myocardial infarction redefined: the impact of high-sensitivity troponin testing on clinical practice. Intern Med J 40:171–172

    Article  CAS  PubMed  Google Scholar 

  2. Montecucco F, Carbone F, Schindler TH (2015) Pathophysiology of ST-segment elevation myocardial infarction: novel mechanisms and treatments. Eur Heart J. doi:10.1093/eurheartj/ehv592

    Google Scholar 

  3. Ferencik M, Hoffmann U, Bamberg F, Januzzi JL (2016) Highly sensitive troponin and coronary computed tomography angiography in the evaluation of suspected acute coronary syndrome in the emergency department. Eur Heart J. doi:10.1093/eurheartj/ehw005

    PubMed  Google Scholar 

  4. Batalis NI, Marcus BJ, Papadea CN, Collins KA (2010) The role of postmortem cardiac markers in the diagnosis of acute myocardial infarction. J Forensic Sci 55:1088–1091

    Article  PubMed  Google Scholar 

  5. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) The immunohistochemical analysis of fibronectin, collagen type III, laminin, and cytokeratin 5 in putrified skin. Forensic Sci Int 61:35–42

    Article  CAS  PubMed  Google Scholar 

  6. Tabata N, Morita M (1997) Immunohistochemical demonstration of bleeding in decomposed bodies by using anti-glycophorin A monoclonal antibody. Forensic Sci Int 87:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Ortmann C, Pfeiffer H, Brinkmann B (2000) Demonstration of myocardial necrosis in the presence of advanced putrefaction. Int J Legal Med 114:50–55

    Article  CAS  PubMed  Google Scholar 

  8. Thomsen H, Held H (1994) Susceptibility of C5b-9(m) to postmortem changes. Int J Legal Med 106:291–293

    Article  CAS  PubMed  Google Scholar 

  9. Palmiere C, Mangin P (2012) Postmortem chemistry update part II. Int J Legal Med 126:199–215

    Article  PubMed  Google Scholar 

  10. Grabherr S, Grimm J, Dominguez A, Vanhaebost J, Mangin P (2014) Advances in post-mortem CT-angiography. Br J Radiol. doi:10.1259/bjr.20130488

    PubMed  PubMed Central  Google Scholar 

  11. Lee H, Park H, Cha JG, Lee S, Yang K (2015) Myocardial contrast defect associated with thrombotic coronary occlusion: pre-autopsy diagnosis of a cardiac death with post-mortem CT angiography. Korean J Radiol 16:1024–1028

    Article  PubMed  PubMed Central  Google Scholar 

  12. Palmiere C, Lobrinus JA, Mangin P, Grabherr S (2013) Detection of coronary thrombosis after multi-phase postmortem CT-angiography. Leg Med (Tokyo) 15:12–18

    Article  Google Scholar 

  13. Grabherr S, Grimm JM, Heinemenn A (2016) Atlas of postmortem angiography, 1st edn. Springer, Berlin

    Book  Google Scholar 

  14. Grabherr S, Doenz F, Steger B, Dirnhofer R, Dominguez A, Sollberger B, Gygax E, Rizzo E, Chevallier C, Meuli R, Mangin P (2011) Multi-phase post-mortem CT angiography: development of a standardized protocol. Int J Legal Med 125:791–802

    Article  PubMed  Google Scholar 

  15. Sheyin O, Davies O, Duan W, Perez X (2015) The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis. Heart Lung 44:75–81

    Article  PubMed  Google Scholar 

  16. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega JC (2013) Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med 39:1181–1189

    Article  PubMed  Google Scholar 

  17. Tiruvoipati R, Sultana N, Lewis D (2012) Cardiac troponin I does not independently predict mortality in critically ill patients with severe sepsis. Emerg Med Australas 24:151–158

    Article  PubMed  Google Scholar 

  18. Ghatak A, Alsulaimi A, Acosta YM, Ferreira A (2015) Acute pulmonary embolism masquerading as acute myocardial infarction. Proc (Bayl Univ Med Cent) 28:69–70

    Google Scholar 

  19. Buja LM, Vander Heide RS (2016) Pathobiology of ischemic heart disease: past, present and future. Cardiovasc Pathol 25:214–220

    Article  PubMed  Google Scholar 

  20. Mahnken AH, Mühlenbruch G, Günther RW, Wildberger JE (2007) CT imaging of myocardial viability: experimental and clinical evidence. Cardiovasc J Afr 18:169–174

    PubMed  PubMed Central  Google Scholar 

  21. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  CAS  PubMed  Google Scholar 

  22. Shen YT, Vatner SF (1995) Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 76:479–488

    Article  CAS  PubMed  Google Scholar 

  23. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794

    Article  CAS  PubMed  Google Scholar 

  24. Myers JH, Stirling MC, Choy M, Buda AJ, Gallagher KP (1986) Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 74:164–172

    Article  CAS  PubMed  Google Scholar 

  25. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  26. Ordovas KG, Higgins CB (2011) Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology 261:358–374

    Article  PubMed  Google Scholar 

  27. Higgins CB, Hagen PL, Newell JD, Schmidt WS, Haigler FH (1982) Contrast enhancement of myocardial infarction: dependence on necrosis and residual blood flow and the relationship to distribution of scintigraphic imaging agents. Circulation 65:739–746

    Article  CAS  PubMed  Google Scholar 

  28. Siemers PT, Higgins CB, Schmidt W, Ashburn W, Hagan P (1978) Detection, quantitation and contrast enhancement of myocardial infarction utilizing computerized axial tomography: comparison with histochemical staining and 99mTc-pyrophosphate imaging. Invest Radiol 13:103–109

    Article  CAS  PubMed  Google Scholar 

  29. Mattrey RF, Higgins CB (1982) Detection of regional myocardial dysfunction during ischemia with computerized tomography: documentation and physiologic basis. Invest Radiol 17:329–335

    Article  CAS  PubMed  Google Scholar 

  30. Doherty PW, Lipton MJ, Berninger WH, Skioldebrand CG, Carlsson E, Redington RW (1981) Detection and quantitation of myocardial infarction in vivo using transmission computed tomography. Circulation 63:597–606

    Article  CAS  PubMed  Google Scholar 

  31. Huber DJ, Lapray JF, Hessel SJ (1981) In vivo evaluation of experimental myocardial infarcts by ungated computed tomography. Am J Roentgenol 136:469–473

    Article  CAS  Google Scholar 

  32. Higgins CB, Sovak M, Schmidt W, Siemers PT (1978) Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary report. Invest Radiol 13:337–339

    Article  CAS  PubMed  Google Scholar 

  33. Higgins CB, Sovak M, Schmidt W, Siemers PT (1979) Differential accumulation of radiopaque contrast material in acute myocardial infarction. Am J Cardiol 43:47–51

    Article  CAS  PubMed  Google Scholar 

  34. Slutsky RA, Peck WW, Mancini GB, Mattrey RF, Higgins CB (1984) Myocardial infarct size determined by computed transmission tomography in canine infarcts of various ages and in the presence of coronary reperfusion. J Am Coll Cardiol 3:138–142

    Article  CAS  PubMed  Google Scholar 

  35. Masuda Y, Uda T, Yoshida K, Yamada Z, Morooka N, Yoshida H, Watanabe S, Inagaki Y, Carlsson E (1983) Diagnosis of myocardial infarction by CT: the study of an initial filling defect and late enhancement of the infarcted myocardium after injection of contrast material. J Cardiogr 13:809–819

    CAS  PubMed  Google Scholar 

  36. Higgins CB, Siemers PT, Newell JD, Schmidt W (1980) Role of iodinated contrast material in the evaluation of myocardial infarction by computerized transmission tomography. Invest Radiol 15:S176–S182

    Article  CAS  PubMed  Google Scholar 

  37. Busardò FP, Frati P, Guglielmi G, Grilli P, Pinto A, Rotondo A, Panebianco V, Fineschi V (2015) Postmortem-computed tomography and postmortem-computed tomography-angiography: a focused update. Radiol Med 120:810–823

    Article  PubMed  Google Scholar 

  38. Donnelly R, Millar-Craig MW (1998) Cardiac troponins: IT upgrade for the heart. Lancet 351:537–539

    Article  CAS  PubMed  Google Scholar 

  39. Li MX, Hwang PM (2015) Structure and function of cardiac troponin C (TNNC1): implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 571:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katrukha IA (2013) Human cardiac troponin complex. Structure and functions. Biochemistry (Mosc) 78:1447–1465

    Article  CAS  Google Scholar 

  41. Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66:12–21

    Article  CAS  PubMed  Google Scholar 

  42. Sharma S, Jackson PG, Makan J (2004) Cardiac troponins. J Clin Pathol 57:1025–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farah CS, Reinach FC (1995) The troponin complex and regulation of muscle contraction. FASEB J 9:755–767

    CAS  PubMed  Google Scholar 

  44. Peter J, Kirchner A, Kuhlisch E, Menschikowski M, Neef B, Dressler J (2006) The relevance of the detection of troponins to the forensic diagnosis of cardiac contusion. Forensic Sci Int 160:127–133

    Article  CAS  PubMed  Google Scholar 

  45. Remmer S, Kuudeberg A, Tõnisson M, Lepik D, Väli M (2013) Cardiac troponin T in forensic autopsy cases. Forensic Sci Int 233:154–157

    Article  CAS  PubMed  Google Scholar 

  46. Chen JH, Inamori-Kawamoto O, Michiue T, Ikeda S, Ishikawa T, Maeda H (2015) Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: a reassessment with special regard to postmortem interval. Leg Med (Tokyo) 17:343–350

    Article  CAS  Google Scholar 

  47. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Oritani S, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2006) Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 1. Analysis with special regard to traumatic causes of death. Leg Med (Tokyo) 8:86–93

    Article  CAS  Google Scholar 

  48. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2006) Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 2: analysis for application in the diagnosis of sudden cardiac death with regard to pathology. Leg Med (Tokyo) 8:94–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Palmiere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanhaebost, J., Ducrot, K., de Froidmont, S. et al. Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry. Radiol med 122, 95–105 (2017). https://doi.org/10.1007/s11547-016-0698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-016-0698-2

Keywords

Navigation