Skip to main content

Advertisement

Log in

Big data in oncologic imaging

  • ONCOLOGY IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Cancer is a complex disease and unfortunately understanding how the components of the cancer system work does not help understand the behavior of the system as a whole. In the words of the Greek philosopher Aristotle “the whole is greater than the sum of parts.” To date, thanks to improved information technology infrastructures, it is possible to store data from each single cancer patient, including clinical data, medical images, laboratory tests, and pathological and genomic information. Indeed, medical archive storage constitutes approximately one-third of total global storage demand and a large part of the data are in the form of medical images. The opportunity is now to draw insight on the whole to the benefit of each individual patient. In the oncologic patient, big data analysis is at the beginning but several useful applications can be envisaged including development of imaging biomarkers to predict disease outcome, assessing the risk of X-ray dose exposure or of renal damage following the administration of contrast agents, and tracking and optimizing patient workflow. The aim of this review is to present current evidence of how big data derived from medical images may impact on the diagnostic pathway of the oncologic patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. doi:10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  2. Schneeweiss S (2014) Learning from big health care data. N Engl J Med 370(23):2161–2163. doi:10.1056/NEJMp1401111

    Article  CAS  PubMed  Google Scholar 

  3. McGrath S, Ghersi D (2016) Building towards precision medicine: empowering medical professionals for the next revolution. BMC Med Genom 9(1):23. doi:10.1186/s12920-016-0183-8

    Article  Google Scholar 

  4. Etheredge LM (2014) Rapid learning: a breakthrough agenda. Health Aff 33(7):1155–1162. doi:10.1377/hlthaff.2014.0043

    Article  Google Scholar 

  5. Andreu-Perez J, Poon CC, Merrifield RD et al (2015) Big data for health. IEEE J Biomed Health Inform 19(4):1193–1208. doi:10.1109/JBHI.2015.2450362

    Article  PubMed  Google Scholar 

  6. Berger ML, Doban V (2014) Big data, advanced analytics and the future of comparative effectiveness research. J Comp Eff Res 3(2):167–176. doi:10.2217/cer.14.2

    Article  PubMed  Google Scholar 

  7. Trifiletti DM, Showalter TN (2015) Big data and comparative effectiveness research in radiation oncology: synergy and accelerated discovery. Front Oncol 5:274. doi:10.3389/fonc.2015.00274

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kansagra AP, Yu JP, Chatterjee AR et al (2016) Big data and the future of radiology informatics. Acad Radiol 23(1):30–42. doi:10.1016/j.acra.2015.10.004

    Article  PubMed  Google Scholar 

  9. Frost & Sullivan (2012) Medical imaging in the cloud. AT&T Intellectual Property. https://www.corp.att.com/healthcare/docs/medical_imaging_cloud.pdf. Accessed 9 June 2016

  10. Ghasemi Frad N, Mirarab A, Shamsi M (2014) A cloud solution for medical image archive. Int J Curr Life Sci 4(6):2999–3005

    Google Scholar 

  11. Byrne E (2013) Scientists save healthcare (but they’re not from med school). http://www.forbes.com/sites/netapp/2013/04/17/healthcare-big-data. Accessed 9 June 2016

  12. Dizon DS, Krilov L, Cohen E et al (2016) Clinical cancer advances 2016: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 34(9):987–1011. doi:10.1200/JCO.2015.65.8427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenstein BS, Capala J, Efstathiou JA et al (2016) How will big data improve clinical and basic research in radiation therapy? Int J Radiat Oncol Biol Phys 95(3):895–904. doi: 10.1016/j.ijrobp.2015.11.009

    Article  PubMed  Google Scholar 

  14. Meyer AM, Basch E (2015) Big data infrastructure for cancer outcomes research: implications for the practicing oncologist. J Oncol Pract 11(3):207–208. doi:10.1200/JOP.2015.004432

    Article  PubMed  Google Scholar 

  15. Kalpathy-Cramer J, Freymann JB, Kirby JS et al (2014) Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol 7(1):147–152

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prior FW, Clark K, Commean P et al (2013) TCIA: an information resource to enable open science. Conf Proc IEEE Eng Med Biol Soc 2013:1282–1285. doi:10.1109/EMBC.2013.6609742

    PubMed  PubMed Central  Google Scholar 

  17. Ridley EL (2014) Big data in radiology will drive personalized patient care. http://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=108619. Accessed 9 June 2016

  18. Silva AC, Morse BG, Hara AK et al (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1050. doi:10.1148/rg.314105159

    Article  PubMed  Google Scholar 

  19. Linet MS, Slovis TL, Miller DL et al (2012) Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin 62(2):75–100. doi:10.3322/caac.21132

    Article  PubMed  PubMed Central  Google Scholar 

  20. National Council on Radiation Protection and Measurements (2009) ionizing radiation exposure of the population of the United States. NCRP Report No. 160. Bethesda, MD

  21. Dauer LT, Brooks AL, Hoel DG et al (2010) Review and evaluation of updated research on the health effects associated with low-dose ionising radiation. Radiat Prot Dosim 140(2):103–136. doi:10.1093/rpd/ncq141

    Article  CAS  Google Scholar 

  22. Muirhead CR, O’Hagan JA, Haylock RG et al (2009) Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer 100(1):206–212. doi:10.1038/sj.bjc.6604825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhargavan-Chatfield M, Morin RL (2013) The ACR computed tomography dose index registry: the 5 million examination update. J Am Coll Radiol 10(12):980–983. doi:10.1016/j.jacr.2013.08.030

    Article  PubMed  Google Scholar 

  24. Efstathiou JA, Nassif DS, McNutt TR et al (2013) Practice-based evidence to evidence-based practice: building the national radiation oncology registry. J Oncol Pract 9(3):e90–e95. doi:10.1200/JOP.2013.001003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bekelman JE, Wall T, Nassif D et al (2013) The national radiation oncology registry: approaches to regulatory compliance to promote wide participation. Int J Radiat Oncol Biol Phys 87(2):S493. doi:10.1016/j.ijrobp.2013.06.1303

    Article  Google Scholar 

  26. Deng J (2014) Big data in radiation oncology: challenges and opportunities. Cancer Sci Res Open Access 1(2):1–2

    Google Scholar 

  27. Gabriele D, Jereczek-Fossa BA, Krengli M et al (2016) Beyond D’Amico risk classes for predicting recurrence after external beam radiotherapy for prostate cancer: the Candiolo classifier. Radiat Oncol 11:23. doi:10.1186/s13014-016-0599-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Siew ED, Basu RK, Wunsch H et al (2016) Optimizing administrative datasets to examine acute kidney injury in the era of big data: workgroup statement from the 15th ADQI Consensus Conference. Can J Kidney Health Dis 3:12. doi:10.1186/s40697-016-0098-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bagshaw SM, Goldstein SL, Ronco C et al (2016) Acute kidney injury in the era of big data: the 15th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Can J Kidney Health Dis 3:5. doi:10.1186/s40697-016-0103-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh SK, Malik A, Firoz A et al (2012) CDKD: a clinical database of kidney diseases. BMC Nephrol 13:23. doi:10.1186/1471-2369-13-23

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heiken JP (2008) Contrast safety in the cancer patient: preventing contrast-induced nephropathy. Cancer Imaging 8:S124–S127. doi:10.1102/1470-7330.2008.9018

    Article  PubMed  PubMed Central  Google Scholar 

  32. Humphreys BD, Soiffer RJ, Magee CC (2005) Renal failure associated with cancer and its treatment: an update. J Am Soc Nephrol 16(1):151–161. doi:10.1681/ASN.2004100843

    Article  PubMed  Google Scholar 

  33. Liu C, Yeung AR, Greenwalt J et al (2014) Designing a patient treatment workflow management and analysis system in a department of radiation oncology. Int J Radiat Oncol Biol Phys 90(1):S746–S747. doi:10.1016/j.ijrobp.2014.05.2169

    Article  Google Scholar 

  34. Bollier D (2010) The premise and peril of big data. Communications and society program. https://www.emc.com/collateral/analyst-reports/10334-ar-promise-peril-of-big-data.pdf. Accessed 9 June 2016

  35. Roski J, Bo-Linn GW, Andrews TA (2014) Creating value in health care through big data: opportunities and policy implications. Health Aff 33(7):1115–1122. doi:10.1377/hlthaff.2014.0147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Mazzetti.

Ethics declarations

No funding was received for this work.

Conflict of interest

Daniele Regge declares that he has no conflict of interest. Simone Mazzetti declares that he has no conflict of interest. Valentina Giannini declares that she has no conflict of interest. Christian Bracco declares that he has no conflict of interest. Michele Stasi declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regge, D., Mazzetti, S., Giannini, V. et al. Big data in oncologic imaging. Radiol med 122, 458–463 (2017). https://doi.org/10.1007/s11547-016-0687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-016-0687-5

Keywords

Navigation