Skip to main content
Log in

Population-based imaging biobanks as source of big data

  • COMPUTER APPLICATIONS
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Advances of computational sciences over the last decades have enabled the introduction of novel methodological approaches in biomedical research. Acquiring extensive and comprehensive data about a research subject and subsequently extracting significant information has opened new possibilities in gaining insight into biological and medical processes. This so-called big data approach has recently found entrance into medical imaging and numerous epidemiological studies have been implementing advanced imaging to identify imaging biomarkers that provide information about physiological processes, including normal development and aging but also on the development of pathological disease states. The purpose of this article is to present existing epidemiological imaging studies and to discuss opportunities, methodological and organizational aspects, and challenges that population imaging poses to the field of big data research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wolfe KH, Li WH (2003) Molecular evolution meets the genomics revolution. Nat Genet 33(Suppl):255–265

    Article  CAS  PubMed  Google Scholar 

  2. Bamberg F, Kauczor HU, Weckbach S et al (2015) Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277(1):206–220

    Article  PubMed  Google Scholar 

  3. Hofman A, van Duijn CM, Franco OH et al (2011) The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 26(8):657–686

    Article  PubMed  PubMed Central  Google Scholar 

  4. Splansky GL, Corey D, Yang Q et al (2007) The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol 165(11):1328–1335

    Article  PubMed  Google Scholar 

  5. Bild DE, Bluemke DA, Burke GL et al (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881

    Article  PubMed  Google Scholar 

  6. Schmermund A, Mohlenkamp S, Stang A et al (2002) Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am Heart J 144(2):212–218

    Article  PubMed  Google Scholar 

  7. Volzke H, Alte D, Schmidt CO et al (2011) Cohort profile: the study of health in Pomerania. Int J Epidemiol 40(2):294–307

    Article  PubMed  Google Scholar 

  8. The ARIC investigators (1989) The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol 129(4):687–702

    Article  Google Scholar 

  9. Detrano R, Guerci AD, Carr JJ et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358(13):1336–1345

    Article  CAS  PubMed  Google Scholar 

  10. Erbel R, Mohlenkamp S, Moebus S et al (2010) Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 56(17):1397–1406

    Article  PubMed  Google Scholar 

  11. Chuang ML, Gona P, Salton CJ et al (2012) Usefulness of the left ventricular myocardial contraction fraction in healthy men and women to predict cardiovascular morbidity and mortality. Am J Cardiol 109(10):1454–1458

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuhn JP, Hernando D, Munoz del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265(1):133–142

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mattace-Raso FU, van der Cammen TJ, Hofman A et al (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113(5):657–663

    Article  PubMed  Google Scholar 

  14. Schlemmer HP, Schafer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40(2):64–71

    Article  PubMed  Google Scholar 

  15. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290(24):3199–3206

    Article  CAS  PubMed  Google Scholar 

  16. Radiology European Society of (2015) ESR position paper on imaging biobanks. Insights Imaging 6(4):403–410

    Article  Google Scholar 

  17. Meyer J, Ostrzinski S, Fredrich D, Havemann C, Krafczyk J, Hoffmann W (2012) Efficient data management in a large-scale epidemiology research project. Comput Methods Programs Biomed 107(3):425–435

    Article  PubMed  Google Scholar 

  18. Petersen SE, Matthews PM, Bamberg F et al (2013) Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank—rationale, challenges and approaches. J Cardiovasc Magn Reson 15:46

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bamberg F, Kauczor HU, Weckbach S et al (2015) Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277:206–220

    Article  PubMed  Google Scholar 

  20. Hegenscheid K, Kuhn JP, Volzke H, Biffar R, Hosten N, Puls R (2009) Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based SHIP study. Rofo 181(8):748–759

    Article  CAS  PubMed  Google Scholar 

  21. Lorbeer R, Schneider T, Quadrat A et al (2015) Cardiovascular risk factors and thoracic aortic wall thickness in a general population. J Vasc Interv Radiol 26(5):635–641

    Article  PubMed  Google Scholar 

  22. Mensel B, Hesselbarth L, Wenzel M et al (2016) Thoracic and abdominal aortic diameters in a general population: MRI-based reference values and association with age and cardiovascular risk factors. Eur Radiol 26(4):969–978

    Article  PubMed  Google Scholar 

  23. Cohort The German National (2014) aims, study design and organization. Eur J Epidemiol 29(5):371–382

    Article  Google Scholar 

  24. Schlett CL, Hendel T, Hirsch J et al (2016) Quantitative, organ-specific interscanner and intrascanner variability for 3 T whole-body magnetic resonance imaging in a multicenter, multivendor study. Invest Radiol 51(4):255–265

    Article  PubMed  Google Scholar 

  25. Hirsch J, Köhn A, Hoinkiss D, Peter J, Thomsen A, Günther M (2016) Fully automated data management and quality assurance in very large prospective cohort MR imaging studies—the MR imaging study within the German National Cohort. In: Proceedings of the 24th annual meeting ISMRM, Singapore

  26. Elliott P, Peakman TC (2008) The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol 37(2):234–244

    Article  PubMed  Google Scholar 

  27. Petersen SE, Matthews PM, Francis JM et al (2016) UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson 18:8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hagenaars SP, Harris SE, Davies G et al (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry. doi:10.1038/mp.2015.225

    Google Scholar 

  29. Okbay A, Baselmans BM, De Neve JE et al (2016) Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 48(6):624–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wain LV, Shrine N, Miller S et al (2015) Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med 3(10):769–781

    Article  PubMed  PubMed Central  Google Scholar 

  31. Luo J, Wu M, Gopukumar D, Zhao Y (2016) Big data application in biomedical research and health care: a literature review. Biomed Inf Insights 8:1–10

    Article  Google Scholar 

  32. Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3):726–738

    Article  CAS  PubMed  Google Scholar 

  33. Jennifer A, Alexander N, Olof E, Fredrik K. Überatlas: robust speed-up of feature-based registration and multi-atlas segmentation. In: Paulsen RR, Pedersen SK (eds) Image analysis: 19th Scandinavian conference, SCIA 2015, Copenhagen, June 15–17, 2015. Proceedings. Springer International Publishing, Cham, pp 92–102

  34. Wurslin C, Machann J, Rempp H, Claussen C, Yang B, Schick F (2010) Topography mapping of whole body adipose tissue using A fully automated and standardized procedure. J Magn Reson Imaging 31(2):430–439

    Article  PubMed  Google Scholar 

  35. Küstner T, Bahar P, Würslin C et al (2015) A new approach for automatic image quality assessment. In: Proceedings of the annual meeting ISMRM

  36. Schlett CL, Hendel T, Weckbach S et al (2016) Population-based imaging and radiomics: rationale and perspective of the German National Cohort MRI study. Rofo 188(7):652–661

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt CO, Hegenscheid K, Erdmann P et al (2013) Psychosocial consequences and severity of disclosed incidental findings from whole-body MRI in a general population study. Eur Radiol 23(5):1343–1351

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Bamberg.

Ethics declarations

Conflict of interest

Author S. Gatidis declares that he has no conflict of interest. Author S. D. Heber declares that she has no conflict of interest. Author C. Storz declares that she has no conflict of interest. Author F. Bamberg declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatidis, S., Heber, S.D., Storz, C. et al. Population-based imaging biobanks as source of big data. Radiol med 122, 430–436 (2017). https://doi.org/10.1007/s11547-016-0684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-016-0684-8

Keywords

Navigation