Skip to main content
Log in

Delineation of the larynx as organ at risk in radiotherapy: a contouring course within “Rete Oncologica Piemonte-Valle d’Aosta” network to reduce inter- and intraobserver variability

  • RADIOTHERAPY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Aims

To evaluate the usefulness of a contouring course in reducing inter- and intraobserver variability in the definition of the larynx as organ at risk (OAR).

Methods

Within the “Rete Oncologica Piemonte-Valle d’Aosta” network, a contouring course focusing on larynx delineation was proposed. Twenty-six radiotherapist technicians (RTTs) experienced in delineating OARs were asked to contour larynx before and after the training. An expert radiation oncologist defined the reference volume for educational purpose. The contoured volumes obtained before and after the course were compared using descriptive statistics (mean value, standard deviation—SD, and coefficient of variation—COV) of volumes and maximum diameters. Conformity index (CI), dice coefficient (DC), and percentage of overlap were used to evaluate the spatial accuracy of the different volumes compared to the reference. Further analysis regarding the variation in the centre of mass (COM) displacement was performed.

Results

The mean volume was 40.4 cm3 before and 65.9 cm3 after the course, approaching the reference value. Mean anteroposterior, laterolateral, and craniocaudal diameters improved, getting each closer to the reference. Moreover, the COM moved approaching reference coordinates. Mean percentage of intersection and DC strongly increased after the course, rising from 57.76 to 93.83 % and from 0.68 to 0.89, respectively. CI enhanced from 0.06 to 0.31.

Conclusions

This study shows an improvement in larynx definition after the contouring course with lower interobserver variability and major consistency compared to the reference volume. Other specific educational activities may further increase the quality of radiation therapy contouring in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Machtay M, Moughan J, Trotti A et al (2008) Factors associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. J Clin Oncol 26(21):3582–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ (2008) Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol 26(22):3770–3776

    Article  PubMed  Google Scholar 

  3. Russi EG, Corvò R, Merlotti A et al (2012) Swallowing dysfunction in head and neck cancer patients treated by radiotherapy: review and recommendations of the supportive task group of the Italian Association of Radiation Oncology. Cancer Treat Rev 38(8):1033–1049

    Article  PubMed  Google Scholar 

  4. Eisbruch A, Schwartz M, Rasch C et al (2004) Dysphagia and aspiration after chemoradiotherapy for head and neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys 60(5):1425–1439

    Article  PubMed  Google Scholar 

  5. Debelleix C, Pointreau Y, Lafond C, Denis F, Calais G, Bourhis JH (2010) Normal tissue tolerance to external beam radiation therapy: larynx and pharynx. Cancer Radiother 14(4–5):301–306

    Article  CAS  PubMed  Google Scholar 

  6. Caudell JJ, Schaner PE, Meredith RF et al (2009) Factors associated with long-term dysphagia after definitive radiotherapy for locally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 73(2):410–415

    Article  PubMed  Google Scholar 

  7. Alterio D, Ciardo D, Preda L et al (2014) Contouring of the Pharyngeal Superior Constrictor Muscle (PSCM). A cooperative study of the Italian Association of Radiation Oncology (AIRO) Head and Neck Group. Radiother Oncol 112(3):337–342

    Article  PubMed  Google Scholar 

  8. Bhide SA, Gulliford S, Kazi R et al (2009) Correlation between dose to the pharyngeal constrictors and patient quality of life and late dysphagia following chemo-IMRT for head and neck cancer. Radiother Oncol 93(3):539–544

    Article  PubMed  Google Scholar 

  9. Christianen ME, Langendijk JA, Westerlaan HE, van de Water TA, Bijl HP (2011) Delineation of organs at risk involved in swallowing for radiotherapy treatment planning. Radiother Oncol 101(3):394–402

    Article  PubMed  Google Scholar 

  10. Dirix P, Abbeel S, Vanstraelen B, Hermans R, Nuyts S (2009) Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose-effect relationships for the swallowing structures. Int J Radiation Oncology Biol Phys 75(2):385–392

    Article  CAS  Google Scholar 

  11. Dirix P, Nuyts S (2010) Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol 11(1):85–91

    Article  PubMed  Google Scholar 

  12. Jensen K, Lambertsen K, Graua C (2007) Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother Oncol 85:74–82

    Article  PubMed  Google Scholar 

  13. Feng FY, Kim HM, Lyden TH et al (2007) Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 68(5):1289–1298

    Article  PubMed  Google Scholar 

  14. Caglar HB, Tishler RB, Othus M et al (2008) Dose to larynx for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 72(4):1110–1118

    Article  PubMed  Google Scholar 

  15. Li B, Li D, Lau DH et al (2009) Clinical-dosimetric analysis of measures of dysphagia including gastrostomy-tube dependence among head and neck cancer patients treated definitively by intensity-modulated radiotherapy with concurrent chemotherapy. Radiat Oncol 12(4):52

    Article  Google Scholar 

  16. Russi EG, Sanguineti G, Chiesa F et al (2013) Is there a role for postoperative radiotherapy following open partial laryngectomy when prognostic factors on the pathological specimen are unfavourable? A survey of head and neck surgical/radiation oncologists. Acta Otorhinolaryngol Ital 33(5):311–319

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brouwer CL, Steenbakkers RJHM, Bourhis J et al (2015) CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol 117:83–90

    Article  PubMed  Google Scholar 

  18. Fotina I, Lűtgendorf-Caucig C, Stock M, Potter R, Georg D (2012) Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol 188(2):160–167

    Article  CAS  PubMed  Google Scholar 

  19. Feuvret L, Noel G, Mazeron JJ, Bey P (2006) Conformity index: a review. Int J Radiat Oncol Biol Phys 64(2):333–342

    Article  PubMed  Google Scholar 

  20. Merlotti A, Alterio D, Vigna-Taglianti R et al (2014) Technical guidelines for head and neck cancer IMRT on behalf of the Italian association of radiation oncology—head and neck working group. Radiat Oncol 29(9):264

    Article  Google Scholar 

  21. Genovesi D, Cefaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187(6):357–366

    Article  PubMed  Google Scholar 

  22. Lűtgendorf-Caucig C, Fotina I, Gallop-Evans E et al (2012) Multicentre evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma. A case study. Strahlenther Onkol 188(11):1025–1030

    Article  PubMed  Google Scholar 

  23. Caravatta L, Macchia G, Mattiucci GC et al (2014) Inter-observer variability of clinical target volume delineation in radiotherapy treatment of pancreatic cancer: a multi-institutional contouring experience. Radiat Oncol 8(9):198

    Article  Google Scholar 

  24. Piva C, Genovesi D, Filippi AR et al (2015) Interobserver variability in clinical target volume delineation for primary mediastinal B-cell lymphoma. Pract Radiat Oncol 5(6):383–389

    Article  PubMed  Google Scholar 

  25. Grabarz D, Panzarella T, Bezjak A et al (2011) Quantifying interobserver variation in target definition in Palliative Radiotherapy. Int J Radiat Oncol Biol Phys 80:1498–1504

    Article  PubMed  Google Scholar 

  26. Krengli M, Cannillo B, Turri L et al (2010) Target volume delineation for preoperative radiotherapy of rectal cancer: inter-observer variability and potential impact of FDG-PET/CT imaging. Technol Cancer Res Treat. 9:393–398

    Article  PubMed  Google Scholar 

  27. Lütgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161

    Article  PubMed  Google Scholar 

  28. Metwally H, Courbon F, David I et al (2011) Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. Int J Radiat Oncol Biol Phys 80:793–799

    Article  PubMed  Google Scholar 

  29. Louie AV, Rodrigues G, Olsthoorn J et al (2010) Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother Oncol 95:166–171

    Article  PubMed  Google Scholar 

  30. Petersen RP, Truong PT, Kader HA et al (2007) Target volume delineation for partial breast radiotherapy planning: clinical characteristics associated with low interobserver concordance. Int J Radiat Oncol Biol Phys 69:41–48

    Article  PubMed  Google Scholar 

  31. Weiss E, Wu J, Sleeman W et al (2010) Clinical evaluation of soft tissue organ boundary visualization on cone-beam computed tomographic imaging. Int J Radiat Oncol Biol Phys 78:929–936

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Mourik AM, Elkhuizen PH, Minkema D et al (2010) Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines. Radiother Oncol 94:286–291

    Article  PubMed  Google Scholar 

  33. Villeirs GM, Van Vaerenbergh K, Vakaet L et al (2005) Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol. 181:424–430

    Article  PubMed  Google Scholar 

  34. Tao CJ, Yi JL, Chen NY et al (2015) Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: a multi-institution clinical study. Radiother Oncol 115(3):407–411

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Domenico Cante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cante, D., Petrucci, E., Piva, C. et al. Delineation of the larynx as organ at risk in radiotherapy: a contouring course within “Rete Oncologica Piemonte-Valle d’Aosta” network to reduce inter- and intraobserver variability. Radiol med 121, 867–872 (2016). https://doi.org/10.1007/s11547-016-0668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-016-0668-8

Keywords

Navigation