Skip to main content

C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications

An Erratum to this article was published on 07 August 2014

Abstract

C-arm cone-beam computed tomography (CBCT) is a new imaging technology integrated in modern angiographic systems. Due to its ability to obtain cross-sectional imaging and the possibility to use dedicated planning and navigation software, it provides an informed platform for interventional oncology procedures. In this paper, we highlight the technical aspects and clinical applications of CBCT imaging and navigation in the most common loco-regional oncological treatments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figs. 7–9
Figs. 10–11
Figs. 12–15

References

  1. Solomon SB, Silverman SG (2010) Imaging in interventional oncology. Radiology 257(3):624–640

    PubMed  Article  Google Scholar 

  2. Abi-Jaoudeh N, Duffy AG, Greten TF, Kohn EC, Clark TW, Wood BJ (2013) Personalized oncology in interventional radiology. J Vasc Interv Radiol 24(8):1083–1092

    PubMed Central  PubMed  Article  Google Scholar 

  3. Chen X, Xiao E, Shu D, Yang C, Liang B, He Z, Bian D (2014) Evaluating the therapeutic effect of hepatocellular carcinoma treated with transcatheter arterial chemoembolization by magnetic resonance perfusion imaging. Eur J Gastroenterol Hepatol 26(1):109–113

    CAS  PubMed  Article  Google Scholar 

  4. Kim I, Kim DJ, Kim KA, Yoon SW, Lee JT (2014) Feasibility of MDCT angiography for determination of tumor-feeding vessels in chemoembolization of hepatocellular carcinoma. J Comput Assist Tomogr. [Epub ahead of print]

  5. Buckner CA, Venkatesan A, Locklin JK, Wood BJ (2011) Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography. J Ultrasound Med 30(2):253–256

    PubMed Central  PubMed  Google Scholar 

  6. Park BJ, Byun JH, Jin YH, Won HJ, Shin YM, Kim KW, Park SJ, Kim PN (2009) CT-guided radiofrequency ablation for hepatocellular carcinomas that were undetectable at US: therapeutic effectiveness and safety. J Vasc Interv Radiol 20(4):490–499

    PubMed  Article  Google Scholar 

  7. Ryan R, Sofocleous C, Schöder H et al (2013) Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. doi:10.1148/radiol.13121462

    PubMed Central  Google Scholar 

  8. Tuncali K, Morrison PR, Winalski CS, Carrino JA, Shankar S, Ready JE, vanSonnenberg E, Silverman SG (2007) MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. Am J Roentgenol 189(1):232–239

    Article  Google Scholar 

  9. Orth RC, Wallace MJ, Kuo MD et al (2008) Technology assessment committee of the society of interventional Radiology C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 19(6):814–820

    PubMed  Article  Google Scholar 

  10. Grass M, Guillemaud R, Rasche V (2009) Interventional X-ray volume tomography. In: Grangeat P (ed) Tomography. Wiley, New York, pp 287–306

    Chapter  Google Scholar 

  11. Racadio JM, Babic D, Homan R et al (2007) Live 3D guidance in the interventional radiology suite. Am J Roentgenol 189(6):W357–W364

    Article  Google Scholar 

  12. Grass M, Koppe R, Klotz E et al (1999) Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph 23(6):311–321

    CAS  PubMed  Article  Google Scholar 

  13. Lin M, Loffroy R, Noordhoek N et al (2011) Evaluating tumors in transcatheter arterial chemoembolization (TACE) using dual-phase cone-beam CT. Minim Invasive Ther Allied Technol 20(5):276–281

    PubMed  Article  Google Scholar 

  14. Caroff J, Jittapiromsak P, Ruijters D et al (2014) Use of time attenuation curves to determine steady-state characteristics before C-arm CT measurement of cerebral blood volume. Neuroradiology 56(3):245–249

    PubMed  Article  Google Scholar 

  15. Tognolini A, Louie J, Hwang G et al (2010) C-arm computed tomography for hepatic interventions: a practical guide. J Vasc Interv Radiol 21(12):1817–1823

    PubMed  Article  Google Scholar 

  16. Kothary N, Abdelmaksoud MH, Tognolini A et al (2011) Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol 22(11):1535–1543

    PubMed  Article  Google Scholar 

  17. Schulz B, Heidenreich R, Heidenreich M et al (2012) Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications. Eur J Radiol 81(12):4138–4142

    PubMed  Article  Google Scholar 

  18. Suzuki S, Yamaguchi I, Kidouchi T, Yamamoto A, Masumoto T, Ozaki Y (2011) Evaluation of effective dose during abdominal three-dimensional imaging for three flat-panel-detector angiography systems. Cardiovasc Intervent Radiol 34(2):376–382

    PubMed  Article  Google Scholar 

  19. Paul J, Jacobi V, Farhang M, Bazrafshan B et al (2013) Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy. Eur Radiol 23(6):1582–1593

    PubMed  Article  Google Scholar 

  20. Braak SJ, van Strijen MJ, van Es HW, Nievelstein RA, van Heesewijk JP (2011) Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 22(4):455–461

    PubMed  Article  Google Scholar 

  21. Tacher V, Radaelli A, Lin M et al (2014) How i do it: cone beam computed tomography during transarterial chemoembolization for liver cancer. Radiology. Accepted

  22. Floridi C, Muollo A, Fontana F et al (2014) C-arm cone-beam computed tomography needle path overlay for percutaneous biopsy of pulmonary nodules, Radiol med. [Epub ahead of print]

  23. Wallace MJ, Murthy R, Kamat PP et al (2007) Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol 18(12):1500–1507

    PubMed  Article  Google Scholar 

  24. Wallace MJ, Kuo MDK, Glaiberman C et al (2008) Three-dimensional C-arm cone-beam CT:applications in the interventional suite. J Vasc Interv Radiol 19:799–813

    PubMed  Article  Google Scholar 

  25. Wallace MJ (2007) C-arm computed tomography for guiding hepatic vascular interventions. Tech Vasc Interv Radiol 10(1):79–86

    PubMed  Article  Google Scholar 

  26. Hirota S, Nakao N, Yamamoto S et al (2006) Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Intervent Radiol 29(6):1034–1038

    PubMed  Article  Google Scholar 

  27. Suk OhJ, Jong Chun H et al (2013) Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma: usefulness of contrast saturation features on cone-beam computed tomography imaging for predicting short-term tumor response. J Vasc Interv Radiol 24(4):483–489

    Article  Google Scholar 

  28. Miyayama S, Yamashiro M, Okuda M et al (2011) Detection of corona enhancement of hypervascular hepatocellular carcinoma by C-arm dual-phase cone-beam CT during hepatic arteriography. Cardiovasc Intervent Radiol 34(1):81–86

    PubMed  Article  Google Scholar 

  29. Meyer B, Witschel M, Frericks B et al (2009) The value of combined soft-tissue and vessel visualisation before transarterial chemoembolisation of the liver using C-arm computed tomography. Eur Radiol 19(9):2302–2309

    CAS  PubMed  Article  Google Scholar 

  30. Deschamps F, Solomon S, Thornton R et al (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Intervent Radiol. [Epub ahead of print]

  31. Miyayama S, Yamashiro M, Okuda et al (2009) Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. CardioVasc Intervent Radiol 32(2):255–264

    PubMed  Article  Google Scholar 

  32. Iwazawa J, Ohue S, Hashimoto N et al (2013) Clinical utility and limitations of tumor-feeder detection software for liver cancer embolization. Eur J Radiol 82(10):1665–1671

    PubMed  Article  Google Scholar 

  33. Tacher V, Lin M, Bhagat N et al (2013) Dual-phase cone-beam computed tomography to see, reach, and treat hepatocellular carcinoma during drug-eluting beads transarterial chemo-embolization. J Vis Exp 2(82):50795

    Google Scholar 

  34. Higashihara H, Osuga K, Onishi H et al (2012) Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT. Eur Radiol 22(4):872–879

    PubMed  Article  Google Scholar 

  35. Yu MH, Kim JH, Yoon J-H et al (2013) Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI. Am J Roentgenol 201(3):675–683

    Article  Google Scholar 

  36. Miyayama S, Matsui O, Yamashiro M et al (2009) Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging 34:502–506

    PubMed  Article  Google Scholar 

  37. Iwazawa J, Ohue S, Hashimoto N et al (2010) Detection of hepatocellular carcinoma: comparison of angiographic C-arm CT and MDCT. Am J Roentgenol 195(4):882–887

    Article  Google Scholar 

  38. Wang Z, Lin M, Lesage D et al (2014) Three-dimensional evaluation of lipiodol retention in HCC after chemoembolization: a quantitative comparison between CBCT and MDCT. Acad Radiol 21(3):393–399

    PubMed  Article  Google Scholar 

  39. Chen R, Geschwind J-F, Wang Z et al (2013) Quantitative assessment of lipiodol deposition after chemoembolization: comparison between cone-beam CT and multi-detector CT. J Vasc Interv Radiol 24(12):1837–1844

    PubMed  Article  Google Scholar 

  40. Jeon UB, Lee JW, Choo KS et al (2009) Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas. World J Gastroenterol 15(46):5833–5837

    PubMed Central  PubMed  Article  Google Scholar 

  41. Iwazawa J, Ohue S, Kitayama T et al (2011) C-arm CT for assessing initial failure of iodized oil accumulation in chemoembolization of hepatocellular carcinoma. Am J Roentgenol 197(2):W337–W342

    Article  Google Scholar 

  42. Loffroy R, Lin M, Yenokyan G et al (2013) Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology 266(2):636–648

    PubMed Central  PubMed  Article  Google Scholar 

  43. Loffroy R, Lin M, Rao P et al (2012) Comparing the detectability of hepatocellular carcinoma by C-arm dual-phase cone-beam computed tomography during hepatic arteriography with conventional contrast-enhanced magnetic resonance imaging. Cardiovasc Intervent Radiol 35(1):97–104

    PubMed  Article  Google Scholar 

  44. Iwazawa J, Ohue S, Hashimoto N et al (2012) Survival after C-arm CT-assisted chemoembolization of unresectable hepatocellular carcinoma. Eur J Radiol 81(12):3985–3992

    PubMed  Article  Google Scholar 

  45. Sato K, Lewandowski R, Mulcahy M et al (2008) Unrespectable chemo refractory liver metastases: radioembolization with 90Y microspheres: safety, efficacy and survival. Radiology 247:507–515

    PubMed  Article  Google Scholar 

  46. Salem R, Lewandowski R, Mulcahy M et al (2010) Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 138:52–64

    CAS  PubMed  Article  Google Scholar 

  47. Hendlisz A, Van den Eynde M, Peeters M et al (2010) Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 28:3687–3694

    CAS  PubMed  Article  Google Scholar 

  48. Maleux G, Heye S, Vaninbroukx J et al (2010) Angiographic considerations in patients undergoing liver-directed radioembolization with 90Y microspheres. Acta Gastroenterol Belg 73:489–496

    CAS  PubMed  Google Scholar 

  49. Heusner T, Hamami M, Ertle J et al (2010) Angiography-based C-arm CT for the assessment of extrahepatic shunting before radioembolization. Rofo 182:603–608

    CAS  PubMed  Article  Google Scholar 

  50. Louie J, Kothary N, Kuo W et al (2009) Incorporating cone-beam CT into the treatment planning for Yttrium-90 radioembolization. J Vasc Intervent Radiol 20:606–613

    Article  Google Scholar 

  51. Bakal CW, Cynamon J, Lakritz PS, Sprayregen S (1993) Value of preoperative renal artery embolization in reducing blood transfusion requirements during nephrectomy for renal cell carcinoma. J Vasc Interv Radiol 4(6):727–731

    CAS  PubMed  Article  Google Scholar 

  52. Ramon J, Rimon U, Garniek A et al (2009) Renal angiomyolipoma: long-term results following selective arterial embolization. Eur Urol 55(5):1155–1161

    PubMed  Article  Google Scholar 

  53. Chan CK, Yu S, Yip S, Lee P (2011) The efficacy, safety and durability of selective renal arterial embolization in treating symptomatic and asymptomatic renal angiomyolipoma. Urology 77(3):642–648

    PubMed  Article  Google Scholar 

  54. Chatziioannou A, Gargas D, Malagari K et al (2012) Transcatheter arterial embolization as therapy of renal angiomyolipomas: the evolution in 15 years of experience. Eur J Radiol 81(9):2308–2312

    CAS  PubMed  Article  Google Scholar 

  55. Gao YA, Huang Y, Zhang R et al (2014) Benign prostatic hyperplasia: prostatic arterial embolization versus transurethral resection of the prostate—a prospective, randomized, and controlled clinical trial. Radiology 270(3):920–928

    PubMed  Article  Google Scholar 

  56. Pisco J, Campos Pinheiro L, Bilhim T et al (2013) Prostatic arterial embolization for benign prostatic hyperplasia: short- and intermediate-term results. Radiology 266(2):668–677

    PubMed  Article  Google Scholar 

  57. Bilhim T, Pisco J, Rio Tinto H et al (2013) Unilateral versus bilateral prostatic arterial embolization for lower urinary tract symptoms in patients with prostate enlargement. Cardiovasc Intervent Radiol 36(2):403–411

    PubMed  Article  Google Scholar 

  58. Bagla S, Rholl KS, Sterling KM et al (2013) Utility of cone-beam CT imaging in prostatic artery embolization. J Vasc Interv Radiol 24(11):1603–1607

    PubMed  Article  Google Scholar 

  59. Widmann G, Bodner G, Bale R et al (2009) Tumour ablation: technical aspects. Cancer Imaging 9:S63–S67

    PubMed Central  PubMed  Article  Google Scholar 

  60. Carrafiello G, Mangini M, De Bernardi I et al (2010) Microwave ablation therapy for treating primary and secondary lung tumours: technical note. Radiol Med 115:962–974

    CAS  PubMed  Article  Google Scholar 

  61. Carrafiello G, Fontana F, Mangini M et al (2012) Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): technical note. Radiol Med 117(8):1386–1397

    CAS  PubMed  Article  Google Scholar 

  62. Busser WM, Braak SJ, Fütterer JJ et al (2013) Cone beam CT guidance provides superior accuracy for complex needle paths compared with CT guidance. Br J Radiol 86(1030):310–318

  63. Morimoto M, Numata K, Kondo M et al (2010) C-arm cone beam CT for hepatic tumor ablation under real-time 3D imaging. Am J Roentgenol 194(5):W452–W454

    Article  Google Scholar 

  64. Iwazawa J, Ohue S, Hashimoto N et al (2012) Ablation margin assessment of liver tumors with intravenous contrast-enhanced C-arm computed tomography. World J Radiol 4(3):109–114

    PubMed Central  PubMed  Article  Google Scholar 

  65. Abi-Jaoudeh N, Mielekamp P, Noordhoek N et al (2012) Cone-beam computed tomography fusion and navigation for real-time positron emission tomography-guided biopsies and ablations: a feasibility study. J Vasc Interv Radiol 23(6):737–743

    PubMed Central  PubMed  Article  Google Scholar 

  66. Abi-Jaoudeh N, Kruecker J, Kadoury S et al (2012) Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 35(5):986–998

    PubMed Central  PubMed  Article  Google Scholar 

  67. Abi-Jaoudeh N, Kobeiter H, Xu S, Wood BJ (2013) Image fusion during vascular and nonvascular image-guided procedures. Tech Vasc Interv Radiol 16(3):168–176

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study supported in part by the Intramural Research Program of the NIH and the NIH Center for Interventional Oncology (BJW & NAJ). NIH and Philips Healthcare have a cooperative research and development agreement.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Floridi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Floridi, C., Radaelli, A., Abi-Jaoudeh, N. et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol med 119, 521–532 (2014). https://doi.org/10.1007/s11547-014-0429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-014-0429-5

Keywords

  • Interventional oncology
  • Cone-beam computed tomography
  • Imaging guidance
  • Percutaneous treatments
  • Embolization
  • Ablation