Skip to main content

Advertisement

Log in

Microwave ablation of renal tumors: state of the art and development trends

  • Vascular And Interventional Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors <2.0 cm. This trend for small, low-stage tumors is the reflection of earlier diagnosis primarily as a result of the widespread and increasing use of non-invasive abdominal imaging modalities such as ultrasound, computerized tomography, and magnetic resonance imaging. Renal tumors are often diagnosed in elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Klatte T, Kroeger N, Zimmermann N et al (2013) The contemporary role of ablative treatment approaches in the management of renal cell carcinoma (RCC): focus on radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), and cryoablation. World J Urol. doi:10.1007/s00345-014-1284-7

  2. Luciani LG, Cestari R, Tallarigo C (2001) Incidental renal cell carcinoma-age and stage characterization and clinical implications: study of 1092 patients. Urology 57:206–207

    Article  Google Scholar 

  3. McKiernan J, Simmons R, Katz J et al (2002) Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 59:816–820

    Article  PubMed  Google Scholar 

  4. Fergany AF, Hafez KS, Novick AC (2000) Long-term results of nephron-sparing surgery for localized renal cell carcinoma: 10-year follow-up. J Urol 163:442–445

    Article  CAS  PubMed  Google Scholar 

  5. Gill IS, Colombo JR Jr, Frank I et al (2005) Laparoscopic partial nephrectomy for hilar tumors. J Urol 174:850–854

    Article  PubMed  Google Scholar 

  6. Whitson JM, Harris CR, Meng MV (2012) Population-based comparative effectiveness of nephron-sparing surgery vs ablation for small renal masses. BJU Int 110:1438–1443

    Article  PubMed  Google Scholar 

  7. Castle SM, Gorbatiy V, Avallone MA et al (2013) Cost comparison of nephron-sparing treatments for cT1a renal masses. Urol Oncol 31:1327–1332

    Article  PubMed  Google Scholar 

  8. Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406

    Article  PubMed  Google Scholar 

  9. Martin J, Athreya S (2013) Meta-analysis of cryoablation versus microwave ablation for small renal masses: is there a difference in outcome? Diagn Interv Radiol 19:501–507

    PubMed  Google Scholar 

  10. Desai MM, Aron M, Gill IS (2005) Laparoscopic partial nephrectomy versus laparoscopic cryoablation for the small renal tumor. Urology 66:23–28

    Article  PubMed  Google Scholar 

  11. Tatli S, Acar M, Tuncali K et al (2010) Percutaneous cryoablation techniques and clinical applications. Diagn Interv Radiol 16:90–95

    PubMed  Google Scholar 

  12. Tatli S, Tapan U, Morrison PR et al (2012) Radiofrequency ablation: technique and clinical applications. Diagn Interv Radiol 18:508–516

    PubMed  Google Scholar 

  13. Campbell S, Novick A, Belldegrun A et al (2009) Guideline for management of the clinical T1 renal mass. J Urol 182:1271–1279

    Article  PubMed  Google Scholar 

  14. Carrafiello G, Laganà D, Mangini M et al (2008) Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int J Surg 1:S65–S69

    Article  Google Scholar 

  15. Simon CJ, Dupuy DE, Mayo-Smith WW (2005) Microwave ablation: principles and applications. Radiographics 25:S69–S83

    Article  PubMed  Google Scholar 

  16. Brace CL (2010) Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng 38(1):65–78

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pandharipande PV, Gervais DA, Hartman RI et al (2010) Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis. Radiology 256(3):836–846

    Article  PubMed Central  PubMed  Google Scholar 

  18. Laeseke PF, Lee FT Jr, van der Weide DW et al (2009) Multiple-antenna microwave ablation: spatially distributing power improves thermal profiles and reduces invasiveness. J Interv Oncol 2(2):65–72

    PubMed Central  PubMed  Google Scholar 

  19. Rehman J, Landman J, Lee D et al (2004) Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. J Endourol 18(1):83–104

    Article  PubMed  Google Scholar 

  20. Zagoria RJ, Pettus JA, Rogers M et al (2011) Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology 77(6):1393–1397

    Article  PubMed  Google Scholar 

  21. Hope WW, Arru JM, McKee JQ et al (2007) Evaluation of mulitprobe radiofrequency technology in a porcine model. HPB (Oxford) 9(5):363–367

    Article  Google Scholar 

  22. Sommer CM, Sommer SA, Mokry T et al (2013) Quantification of tissue shrinkage and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume. J Vasc Interv Radiol 24(8):1241–1248

    Article  PubMed  Google Scholar 

  23. Bartoletti R, Meliani E, Simonato A et al (2012) Microwave-induced thermoablation with Amica-probe is a safe and reproducible method to treat solid renal masses: results from a phase I study. Oncol Rep 28(4):1243–1248

    PubMed  Google Scholar 

  24. Zhang D, Dong B, Wang Y et al (2009) Percutaneous microwave ablation or nephrectomy for VX-2 carcinoma in rabbit kidney. J Urol 182(4):1588–1593

    Article  PubMed  Google Scholar 

  25. Sommer CM, Bryant M, Kortes N et al (2012) Microwave ablation in porcine livers applying 5-minute protocols: influence of deployed energy on extent and shape of coagulation. J Vasc Interv Radiol 23(12):1692–1699

    Article  PubMed  Google Scholar 

  26. Yoshimura K, Okubo K, Ichioka K et al (2001) Laparoscopic partial nephrectomy with a microwave tissue coagulator for small renal tumor. J Urol 165:1893–1896

    Article  CAS  PubMed  Google Scholar 

  27. Clark P, Woodruff R, Zagoria R (2007) Microwave ablation of renal parenchymal tumors before nephrectomy: phase I study. AJR 188:1212–1214

    Article  PubMed  Google Scholar 

  28. Muto G, Castelli E, Migliari R et al (2011) Laparoscopic microwave ablation and enucleation of small renal masses: preliminary experience. Eur Urol 60:173–176

    Article  PubMed  Google Scholar 

  29. Liang P, Wang Y, Zhang D et al (2008) Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J Urol 180(3):844–848

    Article  PubMed  Google Scholar 

  30. Caraffiello G, Mangini M, Fontana F et al (2009) Single-antenna microwave ablation under contrast-enhanced ultrasound guidance for treatment of small renal cell carcinoma: preliminary experience. Cardiovasc Intervent Radiol 33:367–374

    Article  Google Scholar 

  31. Yu J, Liang P, Yu X et al (2011) US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiol 3:900–908

    Google Scholar 

  32. Castle M, Salas N, Leveillee R (2011) Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology 77:792–797

    Article  PubMed  Google Scholar 

  33. Guan W, Bai J, Liu J (2012) Microwave ablation versus partial nephrectomy for small renal tumors. J Surg Oncol 106:316–321

    Article  PubMed  Google Scholar 

  34. Yu J, Liang P, Yu X et al (2014) US-guided percutaneous microwave ablation versus open radical nephrectomy for small renal cell carcinoma: intermediate-term results. Radiology 270:880–887

    Article  PubMed  Google Scholar 

  35. Carrafiello G, Dionigi G, Ierardi AM (2013) Efficacy, safety and effectiveness of image-guided percutaneous microwave ablation in cystic renal lesions Bosniak III or IV after 24 months follow up. Int J Surg 11 Suppl 1:S30–S35

    Article  PubMed  Google Scholar 

  36. Park BK, Kim CK, Lee HM (2008) Image-guided radiofrequency ablation of Bosniak category III or IV cystic renal tumors: initial clinical experience. Eur Radiol 18(7):1519–1525

    Article  PubMed  Google Scholar 

  37. Zhi-yu H, Ping L, Xiao-ling, et al (2014) Ultrasound-guided percutaneous microwave ablation of sporadic renal angiomyolipoma: preliminary results. Acta Radiol (Epub ahead of print)

  38. Prevoo W, van den Bosh MA, Horenblas S (2008) Radiofrequency ablation for treatment of sporadic angiomyolipoma. Urology 72:188–191

    Article  PubMed  Google Scholar 

  39. Sooriakumaran P, Gibbes P, Coughlin G et al (2010) Angiomyolipomata: challenges, solutions, and future prospects based on over a 100 cases treated. BJU 105:101–106

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Floridi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floridi, C., De Bernardi, I., Fontana, F. et al. Microwave ablation of renal tumors: state of the art and development trends. Radiol med 119, 533–540 (2014). https://doi.org/10.1007/s11547-014-0426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-014-0426-8

Keywords

Navigation