Advertisement

La radiologia medica

, Volume 119, Issue 6, pp 400–407 | Cite as

Cardiac magnetic resonance before and after percutaneous pulmonary valve implantation

  • Francesco SecchiEmail author
  • Elda Chiara Resta
  • Luciane Piazza
  • Gianfranco Butera
  • Giovanni Di Leo
  • Mario Carminati
  • Francesco Sardanelli
Cardiac Radiology

Abstract

Purpose

To measure the magnetic resonance (MR) artefact produced by a percutaneous pulmonary valve stent and to evaluate the changes in volumetric and functional right ventricle (RV) parameters due to percutaneous pulmonary valve implantation (PPVI).

Materials and methods

A Melody valve was studied in vitro using clinical cardiac MR (CMR) sequences. In vivo, we analysed the CMR examinations obtained before and after PPVI of 27 consecutive patients. The echocardiography pressure gradient (PG) and catheter PG were measured. The Wilcoxon test was used for comparisons.

Results

In vitro, the least difference between artefact extent and actual valve size (0.1 mm) was obtained with a steady-state free precession (SSFP) sequence. In vivo, RV end-diastolic volume (ml/m2), end-systolic volume (ml/m2) and ejection fraction (%) were 79 ± 42, 43 ± 41 and 49 ± 13 before PPVI and 64 ± 21 (p = 0.054), 30 ± 14 (p = 0.021), and 54 ± 12 (p = 0.018) 6 months after PPVI, respectively. The PG and regurgitation fraction (RF) were 36 ± 15 mmHg and 14 ± 18 % before PPVI and 13 ± 15 mmHg (p < 0.001) and 2 ± 5 % (p = 0.013) after PPVI, respectively. No significant differences were found comparing the PG measured with CMR, echocardiography and catheter.

Conclusions

We showed in vitro that the SSFP sequence produced the most accurate valve measurement. After PPVI, CMR showed a strong decrease of PG and RF with a significant improvement of RV function.

Keywords

Congenital heart diseases Cardiac magnetic resonance (CMR) Percutaneous pulmonary valve implantation (PPVI) Right ventricle (RV) Pulmonary artery (PA) 

Notes

Conflict of interest

Francesco Secchi, Elda Chiara Resta, Luciane Piazza, Gianfranco Butera, Giovanni Di Leo, Mario Carminati, Francesco Sardanelli declare no conflict of interest.

References

  1. 1.
    Mettler BA, Peeler BB (2009) Congenital heart disease surgery in the adult. Surg Clin North Am 89:1021–1032PubMedCrossRefGoogle Scholar
  2. 2.
    Eyskens B, Reybrouck T, Bogaert J et al (2000) Homograft insertion for pulmonary regurgitation after repair of tetralogy of Fallot improves cardiorespiratory exercise performance. Am J Cardiol 85:221–225PubMedCrossRefGoogle Scholar
  3. 3.
    Kanter KR, Budde JM, Parks WJ et al (2002) One hundred pulmonary valve replacements in children after relief of right ventricular outflow tract obstruction. Ann Thorac Surg 73:1801–1806 (discussion 1806–1807)PubMedCrossRefGoogle Scholar
  4. 4.
    Lange R, Weipert J, Homann M et al (2001) Performance of allografts and xenografts for right ventricular outflow tract reconstruction. Ann Thorac Surg 71:S365–S367PubMedCrossRefGoogle Scholar
  5. 5.
    Gatzoulis MA, Balaji S, Webber SA et al (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 356:975–981PubMedCrossRefGoogle Scholar
  6. 6.
    Vliegen HW, van Straten A, de Roos A et al (2002) Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of Fallot. Circulation 106:1703–1707PubMedCrossRefGoogle Scholar
  7. 7.
    Eyskens B, Reybrouck T, Bogaert J et al (2000) Homograft insertion for pulmonary regurgitation after repair of tetralogy of Fallot improves cardiorespiratory exercise performance. Am J Cardiol 85:221–225PubMedCrossRefGoogle Scholar
  8. 8.
    Bonhoeffer P, Boudjemline Y, Saliba Z et al (2000) Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356:1403–1405PubMedCrossRefGoogle Scholar
  9. 9.
    McElhinney DB, Hellenbrand WE, Zahn EM et al (2010) Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation 122:507–516PubMedCrossRefGoogle Scholar
  10. 10.
    Eicken A, Ewert P, Hager A et al (2011) Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients. Eur Heart J 32:1260–1265PubMedCrossRefGoogle Scholar
  11. 11.
    Lurz P, Nordmeyer J, Giardini A et al (2011) Early versus late functional outcome after successful percutaneous pulmonary valve implantation: are the acute effects of altered right ventricular loading all we can expect? J Am Coll Cardiol 57:724–731PubMedCrossRefGoogle Scholar
  12. 12.
    Romeih S, Kroft LJ, Bokenkamp R et al (2006) Delayed improvement of right ventricular diastolic function and regression of right ventricular mass after percutaneous pulmonary valve implantation in patients with congenital heart disease. Am Heart J 158:40–46CrossRefGoogle Scholar
  13. 13.
    Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation/American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497PubMedCrossRefGoogle Scholar
  14. 14.
    Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728PubMedCrossRefGoogle Scholar
  15. 15.
    Secchi F, Iozzelli A, Papini GD et al (2009) MR imaging of aortic coarctation. Radiol Med 114:524–537PubMedCrossRefGoogle Scholar
  16. 16.
    Liebson PR (1991) What role for echocardiography in primary pulmonary hypertension? New ultrasound methods accurately estimate pulmonary pressures. J Crit Illn 6:882–888PubMedGoogle Scholar
  17. 17.
    Nordmeyer J, Gaudin R, Tann OR et al (2010) MRI may be sufficient for noninvasive assessment of great vessel stents: an in vitro comparison of MRI, CT, and conventional angiography. AJR Am J Roentgenol 195:865–871PubMedCrossRefGoogle Scholar
  18. 18.
    Capelastegui Alber A, Astigarraga Aguirre E, de Paz MA et al (2011) Study of the right ventricle using magnetic resonance imaging. Radiologia 54:231–245PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2013

Authors and Affiliations

  • Francesco Secchi
    • 1
    Email author
  • Elda Chiara Resta
    • 2
  • Luciane Piazza
    • 3
  • Gianfranco Butera
    • 3
  • Giovanni Di Leo
    • 1
  • Mario Carminati
    • 3
  • Francesco Sardanelli
    • 1
    • 4
  1. 1.Unità di RadiologiaIRCCS Policlinico San DonatoSan Donato MilaneseItaly
  2. 2.Scuola di Specializzazione in RadiodiagnosticaUniversità degli Studi di MilanoMilanItaly
  3. 3.Unità di Cardiologia Pediatrica e Cardiopatie Congenite dell’AdultoIRCCS Policlinico San DonatoSan Donato MilaneseItaly
  4. 4.Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoSan Donato MilaneseItaly

Personalised recommendations