Advertisement

La radiologia medica

, Volume 118, Issue 1, pp 140–151 | Cite as

Comparison between CT and MR in perfusion imaging assessment of high-grade gliomas

  • M. De SimoneEmail author
  • C. F. Muccio
  • S. M. Pagnotta
  • G. Esposito
  • A. Cianfoni
Neuroradiology / Neuroradiologia

Abstract

Purpose

The aim of our study was to compare the relative cerebral blood volume (CBV) values obtained by first-pass dynamic susceptibility-weighted contrast-enhanced (DSC) T2-weighted magnetic resonance (MR) and perfusion computed tomography (P-CT) imaging in high-grade gliomas (HGG) in the same patient population.

Materials and methods

Sixteen patients with histologically proven HGG underwent P-CT and DSC-MR brain imaging. P-CT studies were obtained using a four-row multislice CT scanner and postprocessed with a commercial software package based on a deconvolution-based technique. DSC-MR images were obtained at 1.5 T with a first-pass dynamic susceptibility contrast-enhanced T2-weighted sequence. P-CT and DSC-MR images were obtained within 4 days of each another, always before surgery. Maximum CBV ratios normalised with contralateral white matter (rCBV) were calculated. Statistical analysis was performed with the classical parametric statistic procedure.

Results

A linear correlation between maximum rCBV values obtained with P-CT and DSC-MR imaging was evident. The best linear model is CT=slope×MR+error and provides a highly significant estimate of the slope equal to 1.08. Thus CT results can be predicted from MR values. Therefore, it is also possible to predict MR results from CT values by estimating the linear model MR=slope×CT+error. DSC-MR imaging gave lower rCBV average values (4.92±1.52) compared with P-CT (5.56±1.55).

Conclusions

In our population of patients, P-CT and DSC-MR imaging showed proportional results in rCBV assessment of HGGs, and thus both modalities may be used interchangeably in HGG of the brain.

Keywords

Dynamic-susceptibility contrast-enhanced MR imaging Perfusion CT High grade glioma T1 effect 

Confronto tra studio di perfusione con metodica RM e con metodica TC nei gliomi cerebrali di alto grado

Riassunto

Obiettivo

L’obiettivo dello studio è di confrontare i valori di volume ematico cerebrale (CBV) ottenuto monitorando il primo passaggio del mezzo di contrasto con tecnica dynamic susceptibility contrast-enhanced in risonanza magnetica (DSC-MR) e con tomografia computerizzata (TC) in perfusione (p-TC) nella stessa popolazione di pazienti affetti da glioma di alto grado (HHG).

Materiali e metodi

Sedici pazienti affetti da glioma di alto grado, istologicamente provato, sono stati sottoposti a p-TC e DSC-MR. Lo studio p-TC è stato ottenuto con apparecchiatura a 4-slice e poi processato con un software commerciale basato sulla tecnica di deconvoluzione. Lo studio DSC-MR è stato ottenuto con uno scanner da 1,5 T, monitorando il primo passaggio del mezzo di contrasto con una sequenza T2-pesata. I due esami sono stati eseguiti nell’arco di 4 giorni l’uno dall’altro, sempre prima dell’intervento chirurgico. Per ogni paziente sono stati calcolati i rapporti tra il massimo valore di CBV nella lesione normalizzato con la sostanza bianca controlaterale (rCBV). L’analisi statistica è stata effettuata mediante procedure di statistica parametrica.

Risultati

Si è evidenziata una correlazione lineare tra il massimo valore di rCBV stimato con la DSC-MR e con la p-TC. Il miglior modello lineare è TC=slope×MR+errore e fornisce una stima molto significativa dello slope=1,08; ciò significa che i risultati della TC possono essere previsti dai valori dello studio RM. Di converso è possibile prevedere i risultati della RM dai valori stimati con la TC attraverso il modello lineare MR=slope×TC+errore. La DSC-MR fornisce dei valori di rCBV in media più bassi (4,92±1,52) di quelli della p-TC (5,56±1,55).

Conclusioni

Nella nostra popolazione di pazienti la p-TC e la DSC-MR forniscono valori proporzionali di rCBV nella valutazione dei HHG, e possono conseguentemente essere usati in maniera intercambiabile nei gliomi di alto grado cerebrali.

Parole chiave

Dynamic susceptibility contrast enhanced MR imaging TC perfusione Gliomi di alto grado Effetto T1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Wintermark M, Smith WS, Ko NU et al (2004) Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol 25:720–729PubMedGoogle Scholar
  2. 2.
    Cianfoni A, Colosimo C, Basile M et al (2007) Brain perfusion CT: principles, technique and clinical applications. Radiol Med 112:1225–1243PubMedCrossRefGoogle Scholar
  3. 3.
    Hoeffner EG, Case I, Jain R et al (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231:632–644PubMedCrossRefGoogle Scholar
  4. 4.
    Srinivan A, Goyal M, Al Azri F et al (2006) State-of-the-art imaging of acute stroke. Radiographics 26:S75–S95CrossRefGoogle Scholar
  5. 5.
    Law M, Yang S, Babb JS et al (2003) Glioma grading: sensitivity, specificity and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMedGoogle Scholar
  6. 6.
    Provenzale JM, Wang GR, Brenner T et al (2002) Comparison of permeability high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716PubMedGoogle Scholar
  7. 7.
    Provenzale JM, York J, Moya MJ et al (2005) Correlation of relative permeability and relative cerebral blood volume in high-grade cerebral neoplasms. AJR Am J Roentgenol 187:1036–1042CrossRefGoogle Scholar
  8. 8.
    Amoroso A (1997) Vascular endothelial growth factor: a key mediator of neoangiogenesis. A review. Eur Rev Med Pharmacol Sci 1:17–25Google Scholar
  9. 9.
    Reijneveld JC, Voest EE, Taphoorn MJ (2000) Angiogenesis in malignant primary and metastatic brain tumors. J Neurol 247:597–608PubMedCrossRefGoogle Scholar
  10. 10.
    Cenic A, Nabavi DG, Craen RA et al (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21:462–470PubMedGoogle Scholar
  11. 11.
    Wetzel SG, Cha S, Johnson G et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803PubMedCrossRefGoogle Scholar
  12. 12.
    Jain R, Ellika SK, Scarpace L et al (2008) Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 29:694–700PubMedCrossRefGoogle Scholar
  13. 13.
    Ding B, Ling HW, Chen KM et al (2006) Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology 48:773–781PubMedCrossRefGoogle Scholar
  14. 14.
    Provenzale JM, Mukundan S, Barboriak D (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649PubMedCrossRefGoogle Scholar
  15. 15.
    Bisdas S, Medov L, Baghi M et al (2008) A comparison of tumor perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiology 18:843–850CrossRefGoogle Scholar
  16. 16.
    Eastwood JD, Provenzale JM (2003) Cerebral blood flow, blood volume, and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology 45:373–376PubMedCrossRefGoogle Scholar
  17. 17.
    Nabavi DG, Cenic A, Craen RA et al (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 20:63–73PubMedGoogle Scholar
  18. 18.
    Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis:pilot study in patients with acute cerebral artery stroke. Radiology 222:227–236PubMedCrossRefGoogle Scholar
  19. 19.
    Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion:experimental validation and initial clinical experience. Radiology 213:141–149PubMedGoogle Scholar
  20. 20.
    Dziubinska M, Basiak M, Konopka M et al (2006) Role of perfusion imaging in computed tomography in diagnostics of cerebral gliomas. Neurol Neurochir Pol 40:51–56PubMedGoogle Scholar
  21. 21.
    Petrella JR, Provenzale JM (2000) MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 175:207–219PubMedGoogle Scholar
  22. 22.
    Jahng G, Song E, Zhu X-P et al (2005) Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging. Radiology 234:909–916PubMedCrossRefGoogle Scholar
  23. 23.
    Cha S (2004) Perfusion MR Imaging of Brain Tumors. Top Magn Reson Imaging 15:279–289PubMedCrossRefGoogle Scholar
  24. 24.
    Boxerman JL, Schmainbda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867PubMedGoogle Scholar
  25. 25.
    Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29PubMedCrossRefGoogle Scholar
  26. 26.
    Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMedGoogle Scholar
  27. 27.
    Aronen HJ, Pardo FS, Kennedy DN et al (2000) High microvasculare blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin. Cancer Res 6:2189–2200PubMedGoogle Scholar
  28. 28.
    Spampinato MV, Wooten C, Dorlon M et al (2006) Comparison of first-pass and second-bolus dynamic susceptibility perfusion MRI in brain tumors. Neuroradiology 48:867–874PubMedCrossRefGoogle Scholar
  29. 29.
    Sugahara T, Korogi Y, Kochi M et al (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • M. De Simone
    • 1
    Email author
  • C. F. Muccio
    • 1
  • S. M. Pagnotta
    • 2
  • G. Esposito
    • 1
  • A. Cianfoni
    • 3
  1. 1.UOC Neuroradiologia, Dipartimento di NeuroscienzeAORN “G. Rummo”BeneventoItaly
  2. 2.Dipartimento di StatisticaUniversità degli Studi del SannioBeneventoItaly
  3. 3.Radiology DepartmentMedical University South Carolina (MUSC)CharlestonUSA

Personalised recommendations