Skip to main content

Advertisement

Log in

Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours

Impiego clinico della sequenza RM di perfusione con tecnica dinamica contrastografica nei tumori cerebrali

  • Neuroradiology / Neuroradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) with a dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) sequence to study brain tumours provides information on the haemodynamic characteristics of the neoplastic tissue. Brain perfusion maps and calculation of perfusion parameters, such as relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV) and mean transit time (MTT) allow assessment of vascularity and angiogenesis within tumours of the central nervous system (CNS), thus providing additional information to conventional MRI sequences. Although DSC-PWI has long been used, its clinical use in the study of brain tumours in daily clinical practice is still to be defined. The aim of this review was to analyse the application of perfusion MRI in the study of brain tumours by summarising our personal experience and the main results reported in the literature.

Riassunto

L’utilizzo della sequenza dinamica di perfusione con mezzo di contrasto (DSC-PWI) in risonanza magnetica (RM) nello studio dei tumori cerebrali fornisce informazioni sulle caratteristiche emodinamiche del tessuto neoplastico. L’elaborazione delle mappe di perfusione cerebrale ed il calcolo dei parametri di perfusione, come il flusso ematico cerebrale relativo (rCBF), il volume ematico cerebrale relativo (rCBV) ed il tempo di transito medio (MTT), consentono di studiare la vascolarizzazione ed i processi angiogenetici presenti nel contesto dei tumori del sistema nervoso centrale (CNS), fornendo informazioni aggiuntive alle sequenze RM convenzionali. Nonostante abbia un impiego diagnostico diffuso, l’esatto ruolo assunto dalla metodica nello studio delle neoplasie cerebrali, nella pratica clinica quotidiana, non è esattamente definito. Lo scopo di questa revisione è quello di analizzare le applicazioni della sequenza di perfusione nello studio dei tumori cerebrali riassumendo l’esperienza personale ed i principali risultati emergenti dalla letteratura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289

    Article  PubMed  Google Scholar 

  2. Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    Article  PubMed  Google Scholar 

  3. Schmainda KM, Rand SD, Joseph AM et al (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 25:1524–1532

    PubMed  Google Scholar 

  4. Lupo JM, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  5. Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  CAS  Google Scholar 

  6. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  7. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  8. Henry RG, Vigneron DB, Fischbein NJ et al (2000) Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. AJNR Am J Neuroradiol 21:357–366

    PubMed  CAS  Google Scholar 

  9. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

    PubMed  CAS  Google Scholar 

  10. Caseiras GB, Chheang S, Babb J et al (2010) Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 73:215–220

    Article  PubMed  Google Scholar 

  11. Danchaivijitr NWA, Tozer DJ (2008) Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant trasformation? Radiology 247:170–178

    Article  PubMed  Google Scholar 

  12. Law M, Oh S, Johnson G et al (2006) Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 58:1099–1107

    Article  PubMed  Google Scholar 

  13. Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498

    Article  PubMed  Google Scholar 

  14. Bisdas S, Kirkpatrick M, Giglio P et al (2009) Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol 30:681–688

    Article  PubMed  CAS  Google Scholar 

  15. Hirai T, Murakami R, Nakamura H et al (2008) Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol 29:1505–1510

    Article  PubMed  CAS  Google Scholar 

  16. Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology 238:658–667

    Article  PubMed  Google Scholar 

  17. Xu M, See SJ, Ng WH et al (2005) Comparison of magnetic resonance spectroscopy and perfusion-weighted imaging in presurgical grading of oligodendroglial tumors. Neurosurgery 56:919–926

    PubMed  Google Scholar 

  18. Cha S, Tihan T, Crawford F et al (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 26:266–273

    PubMed  Google Scholar 

  19. Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  20. Maia AC Jr, Malheiros SM, da Rocha AJ et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 26:777–783

    PubMed  Google Scholar 

  21. Brasil Caseiras G, Ciccarelli O, Altmann DR (2009) Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology 253:505–512

    Article  PubMed  Google Scholar 

  22. Sugahara T, Korogi Y, Shigematsu Y et al (1999) Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr 23:232–237

    Article  PubMed  CAS  Google Scholar 

  23. Cotton F, Ongolo-Zogo P, Louis-Tisserand G et al (2006) Diffusion and perfusion MR imaging in cerebral lymphomas. J Neuroradiol 33:220–228

    Article  PubMed  CAS  Google Scholar 

  24. Hakyemez B, Erdogan C, Bolca N et al (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824

    Article  PubMed  Google Scholar 

  25. Lee IH, Kim ST, Kim HJ et al (2010) Analysis of perfusion weighted image of CNS lymphoma. Eur J Radiol 76:48–51

    Article  PubMed  Google Scholar 

  26. Dandois V, De Coene B, Laloux P et al (2010) Increased relative cerebral blood volume (rCBV) in brain lymphoma. J Neuroradiol 38:191–193

    PubMed  Google Scholar 

  27. Zhang H, Rödiger LA, Shen T et al (2008) Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology 50:525–530

    Article  PubMed  Google Scholar 

  28. Kremer S, Grand S, Remy C et al (2004) Contribution of dynamic contrast MR imaging to the differentiation between dural metastasis and meningioma. Neuroradiology 46:642–648

    Article  PubMed  CAS  Google Scholar 

  29. Law M, Cha S, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    Article  PubMed  Google Scholar 

  30. Bulakbasi N, Kocaoglu M, Farzaliyev A et al (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199

    PubMed  Google Scholar 

  31. Hakyemez B, Erdogan C, Gokalp G et al (2010) Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI. Clin Radiol 65:15–20

    Article  PubMed  CAS  Google Scholar 

  32. Cha S, Lupo JM, Chen MH et al (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 28:1078–1084

    Article  PubMed  CAS  Google Scholar 

  33. Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909

    PubMed  CAS  Google Scholar 

  34. Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558

    Article  PubMed  CAS  Google Scholar 

  35. Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88

    Article  PubMed  Google Scholar 

  36. Barajas RF, Chang JS, Sneed PK et al (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372

    Article  PubMed  CAS  Google Scholar 

  37. Barajas RF, Jr., Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Rossi Espagnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, A., Rossi Espagnet, M.C., Calabria, L.F. et al. Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours. Radiol med 117, 445–460 (2012). https://doi.org/10.1007/s11547-011-0715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-011-0715-4

Keywords

Parole chiave

Navigation