Advertisement

La radiologia medica

, Volume 116, Issue 7, pp 1124–1133 | Cite as

MR in the evaluation of new anterior cruciate ligament and tibial tunnel position: correlation with clinical and functional features

  • N. MagarelliEmail author
  • C. Carducci
  • G. Cannataro
  • G. Graziano
  • A. Leone
  • D. Palmieri
  • M. Barbato
  • F. Ciampa
  • L. Bonomo
Musculoskeletal Radiology / Radiologia Muscoloscheletrica
  • 231 Downloads

Abstract

Purpose

This study aimed to evaluate correlations between the position of the tibial tunnel, its alignment with the ligament-screw system, presence of intratunnel fluid, position of the tibial tunnel with respect to the Blumensaat line and clinical knee stability in patients who underwent arthroscopic reconstruction of the anterior cruciate ligament (ACL), by using magnetic resonance (MR) imaging.

Materials and methods

Forty-eight patients (40 men, eight women; mean age, 31 years) underwent arthroscopic reconstruction of the ACL using double-strand semitendinosus and gracilis tendons. The new ACL was fixed to the tibial tunnel using Bio-Intrafix (Mitek). All patients underwent MR imaging 12 months after surgery and clinical evaluation at 6 and 12 months using the International Knee Documentation Committee (IKDC) scoring system. MR imaging and clinical features were correlated using the Mann-Whitney U test for continuous variables and Fisher’s exact test for categorical variables.

Results

Forty-one patients were clinically stable (groups A and B according to the IKDC test) and seven were unstable (group C). Mean values of tibial tunnel position in clinically unstable vs stable patients were, respectively, −3.6 ±3.8 mm vs. −2.8±3.8 mm in relation to the Blumensaat line (p=0.5712) and 77.3°±11.3 vs. 72.5°±5.5 necesas concerned the angle measured on the coronal view of the new ACL (p=0.3248); fluid was present in the tibial tunnel in 42.9% and 9.8% of cases, respectively (p=0.2104). MR imaging showed misalignment of ligament screw and tibial tunnel in 57.1% of patients in group C and in 12.2% in groups A and B (p=0.017).

Conclusions

Misalignment of the ligament-screw system and the tibial tunnel and the presence of fluid in the tibial tunnel appear to be directly correlated with clinical instability.

Keywords

Knee MR imaging Anterior cruciate ligament Tibial tunnel 

La RM nella valutazione del nuovo legamento crociato anteriore e della posizione del tunnel tibiale: correlazione con le caratteristiche cliniche e funzionali

Riassunto

Obiettivo

Scopo del nostro lavoro è stato valutare le correlazioni tra la posizione del tunnel tibiale, il suo allineamento con il sistema vite-camicia-legamento, la presenza di fluido nel tunnel, la posizione del tunnel tibiale rispetto alla linea di Blumensaat ed i segni clinici di stabilità del ginocchio in pazienti sottoposti a ricostruzione artroscopica del legamento crociato anteriore (LCA), utilizzando la risonanza magnetica (RM) quale metodica d’indagine.

Materiali e metodi

Quarantotto pazienti (40 uomini e 8 donne, età media: 31 anni) sono stati sottoposti a ricostruzione artroscopica del LCA, utilizzando i tendini semitendinoso e gracile (DGST). Il nuovo LCA è stato fissato al tunnel tibiale, utilizzando come dispositivo il Bio-Intrafix (Mitek). Tutti i pazienti sono stati sottoposti ad esame RM, sono stati valutati 12 mesi dopo l’intervento chirurgico e valutati clinicamente a 6 e 12 mesi, in accordo con l’International Knee Documentation Commitee Scoring (IKCD test). Gli aspetti RM e quelli clinici sono stati correlati tra loro, utilizzando il Mann-Whitney U test per le variabili continue e il Fisher test per le variabili categoriche.

Risultati

Clinicamente, 41 pazienti sono risultati stabili (gruppo A e B del test IKDC) e 7 instabili (gruppo C). I valori medi della posizione del tunnel tibiale nei pazienti clinicamente instabili vs. i pazienti stabili sono stati rispettivamente −3,6±3,8 mm vs. −2,8±3,8 mm rispetto alla linea di Blumensaat (p=0,5712) e 77,3°±11,3° vs. 72,5°±5,5° per l’angolo calcolato sull’immagine coronale del nuovo LCA (p=0,3248); era presente fluido nel tunnel tibiale rispettivamente nel 42,9% e nel 9,8% (p=0,2104). Le immagini RM hanno mostrato un disallineamento del sistema vite-camicia-legamento rispetto al tunnel tibiale nel 57,1% dei pazienti nel gruppo C e nel 12,2% nei gruppi A e B (p=0,017).

Conclusioni

Il disallineamento del sistema rispetto al tunnel tibiale e la presenza del liquido nel tunnel sembrano essere direttamente correlati con l’instabilità clinica.

Parole chiave

Ginocchio RM Legamento crociato anteriore Tunnel tibiale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Pinczewski LA, Clingeleffer AJ, Otto DD et al (1997) Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy 13:641–643PubMedCrossRefGoogle Scholar
  2. 2.
    Weiler A, Hoffmann RF, Bail HJ et al (2002) Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep Arthoscopy 18:124–135CrossRefGoogle Scholar
  3. 3.
    Brown CH Jr, Sklar JH, Darwich N (2004) Endoscopic anterior cruciate ligament reconstruction using autogenous doubled gracilis and semitendinosus tendons. Techniques in Knee Surgery 3:215–237CrossRefGoogle Scholar
  4. 4.
    Rosenberg TD, Brown GC, Deffner KT (1997) Anterior cruciate ligament reconstruction with semitendinosus autograft. Sports Med Arthrosc Rev 5:51–58Google Scholar
  5. 5.
    Pratta JN, Griffona DJ, Dunlopb DG et al (2002) Grafting with morsellised allograft and tricalcium Impaction phosphate-hydroxyapatite: incorporation within ovine metaphyseal bone defects. Biomaterials 23:3309–3317CrossRefGoogle Scholar
  6. 6.
    Morgan CD, Gehrmann MR, Jayo MJ, Johnson CS (2002) Histologic findings with a bioabsorbable anterior cruciate ligament interference screw explant after 2.5 years in vivo. Arthroscopy 18:E47PubMedCrossRefGoogle Scholar
  7. 7.
    Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147–151PubMedCrossRefGoogle Scholar
  8. 8.
    Pinczewski LA, Deehan DJ, Salmon LJ et al (2002) A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 30:523–536PubMedGoogle Scholar
  9. 9.
    Weiler A, Hoffmann RF, Stähelin A et al (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16:305–321PubMedCrossRefGoogle Scholar
  10. 10.
    Walton M, Cameron M (1996) Efficacy of an absorbable interference screw for graft fixation in anterior cruciate ligament reconstruction: a study using a sheep model. J Bone Joint Surg 78:126Google Scholar
  11. 11.
    Hayes DA, Watts MC, Tevelen GA, Crawford RW (2005) Central vs peripheral tibial interference screw placement in hamstring anterior cruciate ligament reconstruction: in vitro biomechanics. Arthroscopy 21:703–706PubMedCrossRefGoogle Scholar
  12. 12.
    Chen WT, Shih TT, Tu HY et al (2002) Partial and complete tear of the anterior cruciate ligament. Acta Radiol 43:511–516PubMedCrossRefGoogle Scholar
  13. 13.
    Giaconi JC, Allen CR, Steinbach LS (2009) Anterior cruciate ligament graft reconstruction: clinical, technical, and imaging overview. Top Magn Reson Imaging 20:129–150PubMedCrossRefGoogle Scholar
  14. 14.
    Papakonstantinou O, Chung CB, Chanchairujira K, Resnick DL (2003) Complications of anterior cruciate ligament reconstruction: MR imaging. Eur Radiol 13:1106–1117PubMedGoogle Scholar
  15. 15.
    Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S49–S55PubMedCrossRefGoogle Scholar
  16. 16.
    Bencardino JT, Beltran J, Feldman MI, Rose DJ (2009) MR Imaging of complications of anterior cruciate ligament graft reconstruction. Radiographics 29:2115–2126PubMedCrossRefGoogle Scholar
  17. 17.
    Sanders TG, Tall MA, Mulloy JP, Leis HT (2002) Fluid collections in the osseous tunnel during the first year after anterior cruciate ligament repair using an autologous hamstring graft: natural history and clinical correlation. J Comput Assist Tomogr 26:617–621PubMedCrossRefGoogle Scholar
  18. 18.
    Lahav A, Burks RT, Robert T (2005) Evaluation of the failed ACL reconstruction. Sports Med Arthrosc 13:8–16CrossRefGoogle Scholar
  19. 19.
    Faletti C, Genovese E, Barile A, Regis G (2008) Artrografia con risonanza magnetica. Elsevier, MilanoGoogle Scholar
  20. 20.
    Murata T, Yamamoto H, Ishibashi T et al (1995) The effect of tibial tunnel placement and roofplasty on reconstructed anterior cruciate ligament knees. Arthroscopy 11:57–62CrossRefGoogle Scholar
  21. 21.
    Recht MP, Kramer J (2002) MR imaging of the postoperative knee: a pictorial essay. RadioGraphics 22:765–774PubMedGoogle Scholar
  22. 22.
    Saupe N, White LM, Chiavaras MM et al (2008) Anterior cruciate ligament reconstruction grafts: MR Imaging features at follow up — correlation with functional and clinical evaluation. Radiology 249:581–590PubMedCrossRefGoogle Scholar
  23. 23.
    Pena E, Calvo B, Martinez MA et al (2006) Influence of the tunnel angle ACL reconstructions on the biomechanics of the knee joint. Clin Biomech 21:508–516CrossRefGoogle Scholar
  24. 24.
    Macarini L, Milillo P, Mocci A et al (2008) Poly-L-lactic acidhydroxyapatite (PLLA-HA) bioabsorbable interference screws for tibial graft fixation in anterior cruciate ligament (ACL) reconstruction surgery: MR evaluation of osteointegration and degradation features. Radiol Med 113:1185–1197PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • N. Magarelli
    • 1
    Email author
  • C. Carducci
    • 1
  • G. Cannataro
    • 2
  • G. Graziano
    • 3
  • A. Leone
    • 1
  • D. Palmieri
    • 4
  • M. Barbato
    • 4
  • F. Ciampa
    • 4
  • L. Bonomo
    • 1
  1. 1.Dipartimento di Bioimmagini e Scienze Radiologiche, Istituto di RadiologiaUniversità Cattolica del Sacro Cuore, Policlinico “A. Gemelli”RomaItaly
  2. 2.Unità Operativa di RadiodiagnosticaOspedale Civile “Del Ceppo”PistoiaItaly
  3. 3.Unità di Biostatistica, Dipartimento di Farmacologia Clinica ed EpidemiologiaConsorzio Mario Negri SudSanta Maria Imbaro (CH)Italy
  4. 4.Unità Operativa di Ortopedia e TraumatologiaOspedale “G. Bernabeo”OrtonaItaly

Personalised recommendations