Advertisement

La radiologia medica

, 116:1000 | Cite as

Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data on the impact of calcium score

  • E. Maffei
  • C. Martini
  • C. Tedeschi
  • P. Spagnolo
  • A. Zuccarelli
  • T. Arcadi
  • A. Guaricci
  • S. Seitun
  • A. Weustink
  • N. Mollet
  • F. CademartiriEmail author
Cardiac Radiology / Cardioradiologia

Abstract

Purpose

This study evaluated the diagnostic accuracy of computed tomography coronary angiography (CTCA) for detecting significant coronary artery stenosis (≥50% lumen reduction) at different coronary calcium score (CACS) values with conventional coronary angiography (CAG) as the reference standard.

Material and methods

A total of 1,500 patients (928 men, mean age 58.2±12.5 years) in sinus rhythm who underwent CTCA (64-slice technology) and CAG were enrolled. Diagnostic accuracy and likelihood ratios (LR) of CTCA were evaluated against CAG for the total population and in different CACS classes (0; 1–10; 11–100; 101–400; 401–1,000; >1,000).

Results

The prevalence of obstructive disease was 51% (23.5% single vessel; 27.5% multivessel; progressive increase from 17.9% to 94% through the CACS classes). In the per-patient analysis, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CTCA were 99%, 92%, 94% and 99%, respectively. Per-patient analysis showed a worse PPV of CTCA (76–77%) in classes with low CACS (1–10/11–100). Per-patient LR were higher in classes with extreme CACS values (0 = LR+ 18.3 and LR− = 0.0; c1,000 = LR+ 17.0 and LR− = 0.0) with values always >7 for LR+ and <0.033 for LR− for all CACS classes.

Conclusions

CTCA is a reliable diagnostic modality, with high sensitivity and NPV regardless of CACS.

Keywords

CT coronary angiography Conventional coronary angiography Diagnostic accuracy Coronary artery calcium score Registry 

Accuratezza diagnostica dell’angiografia coronarica con tomografia computerizzata in un’ampia popolazione di pazienti non rivascolarizzati: dati di registro sull’impatto del calcium score

Riassunto

Obiettivo

Obiettivo del nostro lavoro è stato valutare l’accuratezza diagnostica dell’angiografia coronarica non invasiva con tomografia computerizzata (CTCA) nell’individuazione delle stenosi coronariche significative (riduzione del lume coronarico ≥50%) confrontata con la coronarografia convenzionale (CAG) in base al valore di calcium score (CACS).

Materiali e metodi

Sono stati inclusi 1500 pazienti (928 uomini, età media 58,2±12,5 anni) in ritmo cardiaco sinusale sottoposti a CTCA e CAG. L’accuratezza diagnostica è stata calcolata utilizzando la CAG come standard di riferimento. Sono state calcolate l’accuratezza diagnostica, i quozienti di probabilità (LR) per la popolazione totale e nelle differenti classi di CACS (0; 1–10; 11–100; 101–400; 401–1000; >1000).

Risultati

La prevalenza di malattia ostruttiva nella popolazione era del 51% (23,5% malattia mono-vasale; 27,5% multi-vasale; con aumento progressivo dal 17,9% al 94% nelle diverse classi di CACS). Nell’analisi per paziente la sensibilità, specificità, valore predittivo positivo e negativo della CTCA sono risultati 99%, 92%, 94%, 99%, rispettivamente. Nell’analisi per paziente la CTCA ha mostrato un valore predittivo positivo peggiore (76%–77%) nelle classi di CACS basso (1–10/11–100). I LR per paziente sono risultati più elevati nelle classi estreme di CACS (0, LR+=18,3 e LR−=0,0; >1000, LR+=17,0 e LR− =0,0) con valori sempre >7 per LR+ e <0,033 per LR−, per tutte le classi di CACS.

Conclusioni

La CTCA è una metodica diagnostica affidabile con elevata sensibilità e valore predittivo negativo indipendentemente dal valore di CACS.

Parole chiave

Angiografia coronarica TC Angiografia coronarica convenzionale Accuratezza diagnostica Calcio coronarico Registro 

References/Bibliografia

  1. 1.
    Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639. doi: 152/10/630 [pii]10.1059/0003-4819-152-10-201005180-00003PubMedGoogle Scholar
  2. 2.
    Maffei E, Palumbo A, Martini C et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials. Radiol Med 115:368–384. doi: 10.1007/s11547-009-0492-5PubMedCrossRefGoogle Scholar
  3. 3.
    Maffei E, Palumbo A, Martini C et al (2010) Stress-ECG vs. CT coronary angiography for the diagnosis of coronary artery disease: a “real-world” experience. Radiol Med 115:354–367. doi: 10.1007/s11547-009-0456-9PubMedCrossRefGoogle Scholar
  4. 4.
    Maffei E, Messalli G, Palumbo A et al (2010) Left ventricular ejection fraction: real-world comparison between cardiac computed tomography and echocardiography in a large population. Radiol Med 115:1015–1027. doi: 10.1007/s11547-010-0542-zPubMedCrossRefGoogle Scholar
  5. 5.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of nonobstructive coronary artery disease. Eur Radiol 20:846–854. doi: 10.1007/s00330-009-1612-2PubMedCrossRefGoogle Scholar
  6. 6.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score. Eur Radiol 20:81–87. doi: 10.1007/s00330-009-1529-9PubMedCrossRefGoogle Scholar
  7. 7.
    Palumbo AA, Maffei E, Martini C et al (2009) Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 19:2127–2135. doi: 10.1007/s00330-009-1398-2PubMedCrossRefGoogle Scholar
  8. 8.
    Maffei E, Palumbo AA, Martini C et al (2009) “In-house” pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol, in press. doi: 10.1007/s00330-009-1509-0Google Scholar
  9. 9.
    Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-andshoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80PubMedCrossRefGoogle Scholar
  10. 10.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137PubMedCrossRefGoogle Scholar
  11. 11.
    Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogramtriggered high-pitch spiral acquisition. Eur Heart J 31:340–346. doi: ehp470[pii]10.1093/eurheartj/ehp470PubMedCrossRefGoogle Scholar
  12. 12.
    Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121. doi: S1934-5925(09)00084-7[pii]10.1016/j.jcct.2009.02.008PubMedCrossRefGoogle Scholar
  13. 13.
    Maffei E, Martini C, De Crescenzo S et al (2010) Low dose CT of the heart: a quantum leap into a new era of cardiovascular imaging. Radiol Med 115:1179–1207. doi: 10.1007/s11547-010-0566-4PubMedCrossRefGoogle Scholar
  14. 14.
    Martini C, Palumbo A, Maffei E et al (2009) Dose reduction in spiral CT coronary angiography with dual-source equipment. Part I. A phantom study applying different prospective tube current modulation algorithms. Radiol Med 114:1037–1052. doi: 10.1007/s11547-009-0437-zPubMedCrossRefGoogle Scholar
  15. 15.
    Martini C, Palumbo A, Maffei E et al (2010) Dose reduction in spiral CT coronary angiography with dual source equipment. Part II. Dose surplus due to slope-up and slope-down of prospective tube current modulation in a phantom model. Radiol Med 115:36–50. doi: 10.1007/s11547-010-0483-6PubMedCrossRefGoogle Scholar
  16. 16.
    Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497PubMedCrossRefGoogle Scholar
  17. 17.
    Cademartiri F, Mollet NR, Lemos PA et al (2005) Impact of coronary calcium score on diagnostic accuracy for the detection of significant coronary stenosis with multislice computed tomography angiography. Am J Cardiol 95:1225–1227PubMedCrossRefGoogle Scholar
  18. 18.
    Cademartiri F (2006) Is calcium the key for the assessment of progression/regression of coronary artery disease? Heart 92:1187–1188PubMedCrossRefGoogle Scholar
  19. 19.
    Cademartiri F, La Grutta L, Palumbo A et al (2007) Non-invasive visualization of coronary atherosclerosis: state-ofart. J Cardiovasc Med (Hagerstown) 8:129–137. doi: 10.2459/01. JCM.0000260820.40145.a801244665-200703000-00001 [pii]CrossRefGoogle Scholar
  20. 20.
    Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med (Torino) 110:16–41Google Scholar
  21. 21.
    Cademartiri F, Runza G, La Grutta L et al (2005) Non-invasive evaluation of coronary calcium. Radiol Med (Torino) 110:506–522Google Scholar
  22. 22.
    Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832PubMedCrossRefGoogle Scholar
  23. 23.
    Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(Suppl 4):5–40PubMedGoogle Scholar
  24. 24.
    Shaw LJ, Raggi P, Schisterman E et al (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833PubMedCrossRefGoogle Scholar
  25. 25.
    Greenland P, Gaziano JM (2003) Clinical practice. Selecting asymptomatic patients for coronary computed tomography or electrocardiographic exercise testing. N Engl J Med 349:465–473PubMedGoogle Scholar
  26. 26.
    Greenland P, LaBree L, Azen SP et al (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215PubMedCrossRefGoogle Scholar
  27. 27.
    Greenland P, Smith Jr SC, Jr., Grundy SM (2001) Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation 104:1863–1867PubMedCrossRefGoogle Scholar
  28. 28.
    Heuschmid M, Kuettner A, Schroeder S et al (2005) ECG-gated 16-MDCT of the coronary arteries: assessment of image quality and accuracy in detecting stenoses. AJR Am J Roentgenol 184:1413–1419PubMedGoogle Scholar
  29. 29.
    Kuettner A, Beck T, Drosch T et al (2005) Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 45:123–127PubMedCrossRefGoogle Scholar
  30. 30.
    Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839PubMedCrossRefGoogle Scholar
  31. 31.
    Kuettner A, Trabold T, Schroeder S et al (2004) Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol 44:1230–1237PubMedGoogle Scholar
  32. 32.
    Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556PubMedCrossRefGoogle Scholar
  33. 33.
    Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral CT coronary angiography in patients with sTable angina pectoris. J Am Coll Cardiol 43:2265–2270PubMedCrossRefGoogle Scholar
  34. 34.
    Mollet NR, Cademartiri F, van Mieghem CA et al (2005) Highresolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • E. Maffei
    • 1
  • C. Martini
    • 1
    • 2
  • C. Tedeschi
    • 3
  • P. Spagnolo
    • 4
  • A. Zuccarelli
    • 5
  • T. Arcadi
    • 6
  • A. Guaricci
    • 7
  • S. Seitun
    • 8
  • A. Weustink
    • 2
  • N. Mollet
    • 2
  • F. Cademartiri
    • 1
    • 2
    Email author
  1. 1.Dipartimento di Radiologia e del Cardio-PolmonareAzienda Ospedaliero-Universitaria di ParmaParmaItaly
  2. 2.Dipartimento di Radiologia e CardiologiaErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Dipartimento di Radiologia e CardiologiaOspedale San GennaroNapoliItaly
  4. 4.CPC — Centro Prevenzione CardiovascolareOspedale San RaffaeleMilanoItaly
  5. 5.Dipartimento di Radiologia e CardiologiaAzienda ASLCarraraItaly
  6. 6.Dipartimento di RadiologiaUniversità di MessinaMessinaItaly
  7. 7.Dipartimento di CardiologiaUniversità di FoggiaFoggiaItaly
  8. 8.Dipartimento di RadiologiaAzienda Ospedaliero-Universitaria “San Martino”GenovaItaly

Personalised recommendations