Differentiation of normal and neoplastic bone tissue in dynamic gadolinium-enhanced magnetic resonance imaging: validation of a semiautomated technique

Differenziazione di tessuto osseo normale e neoplastico in RM dinamica con software di analisi semiautomatico



This study was undertaken to clinically validate the accuracy of a semiautomated software tool for analysing the enhancement curve in focal malignant bone lesions.

Materials and methods

Twenty-three patients affected by cancer with malignant focal bone lesions underwent dynamic gadolinium-enhanced magnetic resonance (MR) imaging using the following protocol: T1-weighted turbo spin-echo sequences (time to repeat [TR] 600 ms, time to echo [TE] 8.6 ms, field of view [FOV] 40×40 cm) before and after intravenous injection of gadolinium-containing contrast agent. Image postprocessing was performed using the software DyCoH. Each region of interest (5×5 pixels), drawn to include the area of the lesion with the highest values of the area under the curve map, was analysed to obtain time-intensity curves and relative perfusion parameters: time to peak (TTP), peak intensity (PI), slope (60-s slope), intensity at 60 s after contrast agent injection (60-s I) and final intensity (FI).


Data were obtained by analysing 86 malignant lesions and 86 apparently normal bone regions. PI, 60-s slope, 60-s I and FI were significantly different between neoplastic and apparently normal (p<0.001) samples. Sensitivity, specificity and accuracy were, respectively, 94%, 93% and 94% at a PI threshold of 100 (signal-to-noise ratio), with positive and negative predictive values of 93% and 94%. At a threshold value of 0.85 for 60-s slope, sensitivity and specificity values were both 91%.


The semiautomated technique we report appears to be accurate for identifying neoplastic tissue and for mapping perfusion parameters, with the added value of a consistent measurement of perfusion parameters on colour-coded maps.



Scopo del presente lavoro è stato valutare l’accuratezza di un software di analisi semiautomatica nell’analisi delle curve di potenziamento post-contrastografico delle lesioni ossee focali maligne.

Materiali e metodi

Ventitre pazienti oncologici con lesioni ossee focali maligne sono stati sottoposti ad esame di risonanza magnetica dinamica utilizzando sequenze turbo spin echo T1-pesate (tempo di ripetizione [TR] 600 ms, tempo di eco [TE] 8,6 ms, campo di vista [FOV] 40×40 cm) prima e dopo somministrazione endovenosa di mezzo di contrasto paramagnetico. L’analisi delle immagini è stata poi effettuata utilizzando il software DyCoH. Ciascuna regione di interesse (ROI, 5×5 pixel), posizionata nella zona della lesione che presentava i più alti valori di area sotto la curva (AUC) sulla mappa, è stata analizzata per ottenere le curve intensità/tempo ed i relativi parametri perfusionali: tempo di picco (TTP), intensità di picco (PI), pendenza (60”Slope) ed intensità (60”I) al primo minuto dopo la somministrazione di mezzo di contrasto, intensità finale (FI).


I risultati sono stati ottenuti dall’analisi di 86 lesioni maligne ed 86 regioni di tessuto osseo apparentemente normale. I parametri PI, 60”Slope, 60”I e FI hanno mostrato valori con differenza statisticamente significativa tra lesioni neoplastiche e tessuto osseo apparentemente normale (p<0,001). La sensibilità, la specificità e l’accuratezza calcolate si sono mostrate rispettivamente del 94%, 93% e 94% ad un valore soglia di PI di 100 (signal to noise ratio, SNR), con valori predittivi positivi e negativi rispettivamente del 93% e 94%. Ad un valore soglia di 0,85 per il parametro 60”Slope, la sensibilità, la specificità, l’accuratezza ed i valori predittivi positivi e negativi erano del 91%.


La tecnica di analisi semiautomatica utilizzata appare accurata nell’identificazione di tessuto neoplastico e nell’elaborazione di mappe parametriche perfusionali, con il valore aggiunto di una valida misura dei parametri perfusionali sulle mappe colorimetriche stesse.

This is a preview of subscription content, access via your institution.


  1. 1.

    Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  2. 2.

    Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging J Magn Reson Imaging 17:509–520

    Article  PubMed  Google Scholar 

  3. 3.

    Padhani AR (1999) Dynamic contrast enhanced MRI studies in human tumors. Br J Radiol 72:427–431

    CAS  PubMed  Google Scholar 

  4. 4.

    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Jackson A, Buckley DL, Parker GJM (2005) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer-Verlag, Berlin

    Book  Google Scholar 

  6. 6.

    Verstraete KL, Van der Woude HJ, Hogendoorn PC et al (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6:311–321

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Daniel BL, Yen YF, Glover GH et al (1998) Breast disease: dynamic spiral MR imaging. Radiology 209:499–509

    CAS  PubMed  Google Scholar 

  8. 8.

    Russo V, Setola R, Del Vescovo R et al (2007) DyCoH: an innovative tool to dynamic contrast enhancement analysis. Conf Proc IEEE Eng Med Biol Soc 1:63–66

    Google Scholar 

  9. 9.

    Quattrocchi CC, Santini D, Dell’aia P et al (2007) A prospective analysis of CT density measurements of bone metastases after treatment with zoledronic acid. Skeletal Radiol 36:1121–1127

    Article  PubMed  Google Scholar 

  10. 10.

    Padhani AR, Leach M (2005) Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 30:324–341

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumor response to radiotherapy. Lancet Oncol 8:63–74

    Article  PubMed  Google Scholar 

  12. 12.

    Jeong KK, Seong SH, Young JC et al (2005) Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging 22:639–646

    Article  Google Scholar 

  13. 13.

    Schaefer JF, Vollmar J, Schick F et al (2004) Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging-perfusion differences in malignant and benign lesions. Radiology 232:544–553

    Article  PubMed  Google Scholar 

  14. 14.

    Jackson A (2004) Analysis of dynamic contrast enhanced MRI. Br J Radiol 77:S154–S166

    Article  PubMed  Google Scholar 

  15. 15.

    Jackson A, O’Connor JP, Parker GJ et al (2007) Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 13:3449–3459

    Article  PubMed  Google Scholar 

  16. 16.

    Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging;10:254–259

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Lavini C, de Jonge MC, van de Sande MG et al (2007) Pixel-by-pixel analysis of DCE-MRI curve patterns and an illustration of its applications to the imaging of the musculoskeletal system. Magn Reson Imaging;25:604–612

    Article  PubMed  Google Scholar 

  18. 18.

    Verstraete KL, De Deene Y, Roels H et al (1994) Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging - parametric “first-pass” images depict tissue vascularization and perfusion. Radiology;192:835–843

    CAS  PubMed  Google Scholar 

  19. 19.

    Rijpkema M, Kaanders JH, Joosten FB et al (2001) A method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 14:457–463

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Gribbestad IS, Nilsen G, Fjøsne HE et al (1994) Comparative signal intensity measurements in dynamic gadolinium-enhanced MR mammography. J Magn Reson Imaging 4:477–480

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    CAS  PubMed  Google Scholar 

  22. 22.

    Barile A, Regis G, Masi R et al (2007) Musculoskeletal tumours: preliminary experience with perfusion MRI. Radiol Med 112:550–561

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Griffith JF, Yeung DK, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  24. 24.

    Griffith JF, Yeung DK, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  25. 25.

    Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. D’Agostino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

D’Agostino, F., Dell’Aia, P., Quattrocchi, C. et al. Differentiation of normal and neoplastic bone tissue in dynamic gadolinium-enhanced magnetic resonance imaging: validation of a semiautomated technique. Radiol med 115, 804–814 (2010). https://doi.org/10.1007/s11547-010-0572-6

Download citation


  • Contrast-enhanced magnetic resonance
  • Bone neoplastic lesion
  • Tumour perfusion

Parole chiave

  • Risonanza magnetica dinamica
  • Lesione ossea neoplastica
  • Perfusione del tessuto neoplastico