Skip to main content

Virtopsy versus digital autopsy: virtuous autopsy

Virtopsy versus autopsia digitale: autopsia virtuosa

Abstract

Multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) are being increasingly implemented in forensic pathology. These methods may serve as an adjuvant to classic forensic autopsies. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries sometimes not seen on external examination of the victim. Various postprocessing techniques can provide strong forensic evidence for use in legal proceedings. The documentation and analysis of postmortem findings with MSCT and MRI and postprocessing techniques (virtopsy) is investigator independent, objective and noninvasive and will lead to qualitative improvements in forensic pathologic investigation. Apart from the accuracy and three dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, noninvasive or minimally invasive approach will improve forensic medicine in the near future.

Riassunto

La tomografia computerizzata multistrato (TCMS) e la risonanza magnetica (RM) sono metodiche d’imaging sempre più richieste in patologia forense. Tali tecniche possono essere di grande ausilio alle classiche autopsie medico-legali. La visualizzazione degli organi interni del cadavere può essere eseguita preventivamente utilizzando la TCMS e/o la RM. La RM, in aggiunta, è indicata anche per la valutazione delle vittime superstiti di azioni violente, in particolare lo strangolamento, in quanto aiuta ad individuare lesioni interne talvolta non apprezzabili neanche ad un’attenta osservazione esterna della vittima. Varie tecniche di post-elaborazione sono in grado di fornire indiscutibili prove legali da utilizzare nel corso dei vari procedimenti giudiziari. La documentazione e l’analisi dei reperti post-mortem individuati mediante TCMS e RM come pure alcune tecniche di post-elaborazione (virtopsy) sono esecutore-indipendenti, oggettive, non invasive e porteranno nel tempo a miglioramenti qualitativi nelle indagini patologiche forensi. A parte l’accuratezza e la tridimensionalità di cui mancano le documentazioni convenzionali, queste tecniche consentono di riesaminare sia il cadavere che il luogo del delitto anche decenni più tardi, dopo la sepoltura della salma e l’alterazione del luogo del reato. Noi crediamo che questo approccio virtuale, noninvasivo o minimamente invasivo permetterà di migliorare la medicina forense nel prossimo futuro. kw]

This is a preview of subscription content, access via your institution.

References/Bibliografia

  1. Randall BB, Fierro MF, Froede RC (1998) Practice guideline for forensic pathology. Members of the Forensic Pathology Committee, College of American Pathologists. Arch Pathol Lab Med 122:1056–1064

    CAS  PubMed  Google Scholar 

  2. Di Maio VJ (1984) Basic principles in the investigation of homicides. Pathol Annu 19 Pt 2:149–164

    PubMed  Google Scholar 

  3. Thali MJ, Jackowski C, Oesterhelweg L et al (2007) Virtopsy — the Swiss virtual autopsy approach. Leg Med 9:100–104

    Article  Google Scholar 

  4. Thali MJ, Dirnhofer R, Becker R et al (2004) Is “virtual histology” the next step after the “virtual autopsy”? Magnetic resonance microscopy in forensic medicine. Magn Reson Imaging 22:1131–1138

    Article  CAS  PubMed  Google Scholar 

  5. Thali MJ, Schweitzer W, Yen K et al (2003) New horizons in forensic radiology: the 60-second digital autopsy-full-body examination of a gunshot victim by multislice computed tomography. Am J Forensic Med Pathol 24:22–27

    Article  PubMed  Google Scholar 

  6. Thali MJ, Yen K, Schweitzer W et al (2003) Into the decomposed body-forensic digital autopsy using multislice-computed tomography. Forensic Sci Int 134:109–114

    Article  CAS  PubMed  Google Scholar 

  7. Thali MJ, Yen K, Schweitzer W et al (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) — a feasibility study. J Forensic Sci 48:386–403

    PubMed  Google Scholar 

  8. Dirnhofer R, Jackowski C, Vock P et al (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333

    Article  PubMed  Google Scholar 

  9. Donchin Y, Rivkind AI, Bar-Ziv J et al (1994) Utility of postmortem computed tomography in trauma victims. J Trauma 37:552–556

    Article  CAS  PubMed  Google Scholar 

  10. Ros PR, Li KC, Vo P et al (1990) Preautopsy magnetic resonance imaging: initial experience. Magn Reson Imaging 8:303–308

    Article  CAS  PubMed  Google Scholar 

  11. Thali MJ, Taubenreuther U, Karolczak M et al (2003) Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci 48:1336–1342

    PubMed  Google Scholar 

  12. Patriquin L, Kassarjian A, Barish M et al (2001) Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience. J Magn Reson Imaging 13:277–287

    Article  CAS  PubMed  Google Scholar 

  13. Jackowski C, Sonnenschein M, Thali MJ et al (2005) Virtopsy: postmortem minimally invasive angiography using cross section techniquesimplementation and preliminary results. J Forensic Sci 50:1175–1186

    Article  PubMed  Google Scholar 

  14. Ross S, Spendlove D, Bolliger S et al (2008) Postmortem whole-body CT angiography: evaluation of two contrast media solutions. AJR Am J Roentgenol 190:1380–1389

    Article  PubMed  Google Scholar 

  15. Brüschweiler W, Braun M, Dirnhofer R, Thali MJ (2003) Analysis of patterned injuries and injury-causing instruments with forensic 3D/CAD supported photogrammetry (FPHG): an instruction manual for the documentation process. Forensic Sci Int 132:130–138

    Article  PubMed  Google Scholar 

  16. Thali MJ, Braun M, Markwalder TH et al (2003) Bite mark documentation and analysis: the forensic 3D/CAD supported photogrammetry approach. Forensic Sci Int 135:115–121

    Article  CAS  PubMed  Google Scholar 

  17. Thali MJ, Braun M, Wirth J et al (2003) 3D surface and body documentation in forensic medicine: 3- D/CAD Photogrammetry merged with 3D radiological scanning. J Forensic Sci 48:1356–1365

    PubMed  Google Scholar 

  18. Ith M, Bigler P, Scheurer E et al (2002) Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy. Magn Reson Med 48:915–920

    Article  CAS  PubMed  Google Scholar 

  19. Yen K, Vock P, Tiefenthaler B et al (2004) Virtopsy: forensic traumatology of the subcutaneous fatty tissue: multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J Forensic Sci 49:799–806

    Article  PubMed  Google Scholar 

  20. Pomara C, Karch SB, Mallegni F et al (2008) A medieval murder. Am J Forensic Med Pathol 29:72–74

    Article  PubMed  Google Scholar 

  21. Yen K, Thali M, Aghayev E et al (2005) Strangulation signs: initial correlation of MRI, MSCT and forensic neck findings. J Magn Reson Imaging 22:501–510

    Article  PubMed  Google Scholar 

  22. Ljung P, Winskog C, Persson A et al (2006) Full-body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Trans Vis Comput Graph 12:869–876

    Article  PubMed  Google Scholar 

  23. Jackowski C, Aghayev E, Sonnenschein M et al (2006) Maximum intensity projection of cranial computed tomography data for dental identification. Int J Legal Med 120:165–167

    Article  CAS  PubMed  Google Scholar 

  24. Thali MJ, Markwalder T, Jackowski C et al (2006) Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci 51:113–119

    Article  PubMed  Google Scholar 

  25. Jackowski C, Lussi A, Classens M et al (2006) Extended CT scale overcomes restoration caused streak artifacts-3D color encoded automatic discrimination of dental restorations for identification. J Comput Assist Tomogr 30:510–513

    Article  CAS  PubMed  Google Scholar 

  26. Sidler M, Jackowski C, Dirnhofer R et al (2007) Use of multislice computed tomography in disaster victim identification: advantages and limitations. Forensic Sci Int 169:118–128

    Article  PubMed  Google Scholar 

  27. Hayakawa M, Yamamoto S, Motani H et al (2006) Does imaging technology overcome problems of conventional postmortem examination? A trial of computed tomography imaging for postmortem examination. Int J Legal Med 120:24–26

    Article  PubMed  Google Scholar 

  28. Magid D, Bryan BM, Drebin RA et al (1989) Three-dimensional imaging of an Egyptian mummy. Clin Imaging 13:239–240

    Article  CAS  PubMed  Google Scholar 

  29. Notman DN, Tashjian J, Aufderheide AC et al (1986) Modern imaging and endoscopic biopsy techniques in Egyptian mummies. AJR Am J Roentgenol 146:93–96

    CAS  PubMed  Google Scholar 

  30. Cosmacini P, Piacentini P (2008) Notes on the history of the radiological study of Egyptian mummies: from X-rays to new imaging techniques. Radiol Med 113:615–626

    Article  CAS  PubMed  Google Scholar 

  31. World Health Organisation (2002) Reducing risks, promoting health life. The world health report. WHO, Geneva

    Google Scholar 

  32. National Center for Injury Prevention and Control (2000) WISQARS — Leading causes of death reports. CDC, Atlanta

    Google Scholar 

  33. Byard RW, Houldsworth G, James RA et al (2001) Characteristic features of suicidal drownings: a 20-year study. Am J Forensic Med Pathol 22:134–138

    Article  CAS  PubMed  Google Scholar 

  34. Mackie IJ (1999) Patterns of drowning in Australia, 1992–1997. Med J Aust 171:587–590

    CAS  PubMed  Google Scholar 

  35. Cummings P, Quan L (1999) Trends in unintentional drowning: the role of alcohol and medical care. JAMA 281:2198–2202

    Article  CAS  PubMed  Google Scholar 

  36. Christe A, Aghayev E, Jackowski C et al (2008) Drowning-post-mortem imaging findings by computed tomography. Eur Radiol 18:283–290

    Article  PubMed  Google Scholar 

  37. Oliver WR, Chancellor AS, Soitys J et al (1995) Three-dimensional reconstruction of a bullet path: validation by computed radiography. J Forensic Sci 40:321–324

    CAS  PubMed  Google Scholar 

  38. Andenmatten MA, Thali MJ, Kneubuehl BP et al (2008) Gunshot injuries detected by post-mortem multislice computed tomography (MSCT): a feasibility study. Leg Med (Tokyo) 10:287–292

    CAS  Google Scholar 

  39. Madea B, Henssge C, Lockhoven HB (1986) Priority of multiple gunshot injuries of the skull. Z Rechtsmed 97:213–218

    CAS  PubMed  Google Scholar 

  40. Yen K, Lövblad KO, Scheurer E et al (2007) Post-mortem forensic neuroimaging: correlation of MSCT and MRI findings with autopsy results. Forensic Sci Int 173:21–35

    Article  CAS  PubMed  Google Scholar 

  41. Thali MJ, Yen K, Plattner T et al (2002) Charred body: virtual autopsy with multi-slice computed tomography and magnetic resonance imaging. J Forensic Sci 47:1326–1331

    PubMed  Google Scholar 

  42. Wallace SK, Cohen WA, Stern EJ, Reay DT (1994) Judicial hanging: postmortem radiographic CT, and MR imaging features with autopsy confirmation. Radiology 193:263–267

    CAS  PubMed  Google Scholar 

  43. Aghayev E, Yen K, Sonnenschein M et al (2005) Pneumomediastinum and soft tissue emphysema of the neck in postmortem CT and MRI: a new vital sign in hanging? Forensic Sci Int 153:181–188

    Article  PubMed  Google Scholar 

  44. Alfakih K, Plein S, Thiele H et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  45. Hsu JC, Johnson GA, Smith WM et al (1994) Magnetic resonance imaging of chronic myocardial infarcts in formalin-fixed human autopsy hearts. Circulation 89:2133–2140

    CAS  PubMed  Google Scholar 

  46. Jackowski C, Schweitzer W, Thali M et al (2005) Virtopsy: postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci Int 149:11–23

    Article  PubMed  Google Scholar 

  47. Jauhiainen T, Jarvinen VM, Hekali PE (2002) Evaluation of methods for MR imaging of human right ventricular heart volumes and mass. Acta Radiol 43:587–592

    Article  CAS  PubMed  Google Scholar 

  48. Edwards JE (1970) The autopsy: do we still need it? Chest 57:113–114

    Article  CAS  PubMed  Google Scholar 

  49. Hull MJ, Nazarian RM, Wheeler AE et al (2007) Resident physician opinion on autopsy importance and procurement. Hum Pathol 38:342–350

    Article  PubMed  Google Scholar 

  50. Rutty GN, Duerden RM, Carter N, Clark JC (2001) Are coroners’ necropsies necessary? A prospective study examining whether a “view and grant” system of death certification could be introduced into England and Wales. J Clin Pathol 54:279–284

    Article  CAS  PubMed  Google Scholar 

  51. O’Mara MS, Battistella F (2004) Do we still need autopsies. Curr Surg 61:151–155

    Article  PubMed  Google Scholar 

  52. Vennemann B, Du Chesne A, Brinkmann B (2001) The practice of medical post-mortem examination. Dtsch Med Wochenschr 126:712–716

    Article  CAS  PubMed  Google Scholar 

  53. Burton EC, Phillips RS, Covinsky KE et al (2004) The relation of autopsy rate to physicians’ beliefs and recommendations regarding autopsy. Am J Med 117:255–261

    Article  PubMed  Google Scholar 

  54. Nakhleh R, Coffin C, Cooper K (2006) Association of directors of anatomic and surgical pathology. Recommendations for quality assurance and improvement in surgical and autopsy pathology. Hum Pathol 37:985–988

    Article  PubMed  Google Scholar 

  55. Thali MJ, Yen K, Vock P et al (2003) Image-guided virtual autopsy findings of gunshot victims performed with multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) and subsequent correlation between radiology and autopsy findings. Forensic Sci Int 138:8–16

    Article  PubMed  Google Scholar 

  56. Harke HT, Levy AD, Abbott RM et al (2007) Autopsy radiography: digital radiographs (DR) vs multidetector computed tomography (MDCT) in high velocity gunshot wound victims. Am J Forensic Med Pathol 28:13–19

    Article  Google Scholar 

  57. Poulsen K, Simonsen J (2007) Computed tomography as routine connection with medico-legal autopsies. Forensic Sci Int 171:190–197

    Article  PubMed  Google Scholar 

  58. Pomara C, Marrone A, D’Errico S et al (2005) L’autopsia nelle morti da arma da fuoco: integrazione mediante TC spirale. Utile contributo? Riv It Med Leg 6:1131–1140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Guglielmi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pomara, C., Fineschi, V., Scalzo, G. et al. Virtopsy versus digital autopsy: virtuous autopsy. Radiol med 114, 1367 (2009). https://doi.org/10.1007/s11547-009-0435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11547-009-0435-1

Keywords

  • Virtopsy
  • Postmortem imaging
  • Multislice computed tomography (MSCT)
  • Magnetic resonance imaging (MRI)
  • Noninvasive autopsy
  • Forensic radiology
  • Digital autopsy

Parole chiave

  • Virtopsy
  • Post-mortem imaging
  • Tomografia computerizzata multistrato (TCMS)
  • Risonanza magnetica (RM)
  • Autopsia non-invasiva
  • Radiologia forense
  • Autopsia digitale