Skip to main content

Advertisement

Log in

Role of diffusion- and perfusion-weighted MR imaging for brain tumour characterisation

Impiego delle tecniche di diffusione e di perfusione con RM nella caratterizzazione dei tumori cerebrali

  • Neuroradiology/Neuroradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was undertaken to correlate apparent diffusion coefficient (ADC) and relative regional cerebral blood volume (rrCBV) to histological findings in a large series of patients with primary or secondary brain tumours to evaluate diffusion-weighted (DWI) and perfusionweighted (PWI) imaging in the characterisation of cerebral tumors.

Materials and methods

Ninety-eight patients with cerebral tumours, 46 of which were primary (seven grade 0-I, nine low-grade gliomas, two gliomatosis cerebri, nine lymphomas and 19 high-grade gliomas) and 52 secondary, underwent conventional magnetic resonance (MR) imaging completed with DWI and dynamic contrast susceptibility PWI. Both ADC and rrCBV were calculated on a workstation by using Functool 2 software. Student’s t test was used to determine any statistically significant differences in the ADC and rrCBV values.

Results

Seventeen of 98 tumours were cystic or necrotic (12/17 hypointense and 5/17 hyperintense on DWI); the ADC value of hyperintense cystic areas was 0.97±0.23×10−3 mm2/s. The ADC value of solid tumours varied between 0.64 and 3.5×10−3 mm2/s. The rrCBV value was 1.4 (σ 0.66) in low-grade gliomas; 1.22 (σ 0.25) in lymphomas; 4.5 (σ 0.85) in grade III gliomas; 3.18 (σ 1.26) in grade IV gliomas and 2.53 (σ 1.6) in metastases.

Conclusions

DWI has an important role in the differential diagnosis of cystic cerebral masses but not in tumour characterisation. PWI is helpful in differentiating high-from low-grade gliomas and lymphomas from high-grade gliomas.

Riassunto

Obiettivo

Correlare i valori del coefficiente di diffusione apparente (ADC) e del volume cerebrale medio (rrCBV), ottenuti su un’ampia serie di pazienti con tumori cerebrali (primitivi o secondari), con il dato istologico per valutare l’apporto delle tecniche di diffusione (DWI) e perfusione (PWI) nella caratterizzazione dei tumori cerebrali.

Materiali e metodi

Novantotto pazienti con tumore cerebrale, 46 con tumore primitivo (7 di grado 0–I, 9 gliomi a basso grado, 2 gliomatosi cerebri, 9 linfomi, 19 gliomi ad alto grado) e 52 con metastasi sono stati sottoposti ad esame RM convenzionale completato da acquisizione DWI e da studio perfusionale ottenuto durante la somministrazione di un bolo di gadolinio. Su tutte le lesioni sono state effettuate rielaborazioni su una work-station per il calcolo dell’ADC e della rrCBV utilizzando il software “functool 2”. Sono state effettuate rielaborazioni statistiche utilizzando il test t di Student per dati non appaiati.

Risultati

Diciassette tumori erano costituiti da una componente centrale cistica che in 5 casi era iperintensa in DWI (valore medio ADC 0,97±0,23×10−3 mm2/s). L’ADC della parte solida dei tumori aveva valori compresi tra 0,64 e 3,5×10−3 mm2/s. L’rrCBV media è risultata di 1,4 (σ 0,66) nei gliomi a basso grado; 1,22 (σ 0,25) nei linfomi; 4,5 (σ 0,85) nei gliomi grado III; 3,18 (σ 1,26) nei gliomi grado IV e 2,53 (σ 1,6) nelle metastasi.

Conclusioni

Le acquisizioni DWI hanno un ruolo rilevante nella diagnosi delle masse cistiche, mentre non sembrano avere un ruolo nella caratterizzazione dei tumori. La PWI fornisce elementi utili nella diagnosi differenziale tra gliomi a basso ed alto grado e tra gliomi ad alto grado e linfomi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasm: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795–803

    Article  PubMed  Google Scholar 

  2. Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusionweighted and perfusion MR imaging for brain tumor charecterization and assessment of tratment response. Radiology 239:632–649

    Article  PubMed  Google Scholar 

  3. Bulakbsi N, Kocaoglu M, Farzaliyev A et al (2005) Assessment of diagnostic accuracy of perfusion MR imaging and metastastic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199

    Google Scholar 

  4. Hakyemez B, Erdogan C, Ercan I et al (2005) High-grade and low grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol 60:493–502

    Article  PubMed  CAS  Google Scholar 

  5. Nadal Desbarats L, Herlidou S, De Marco G et al (2003) Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using tha apparent diffusion coefficient and normalized diffusion-weighted images. Magn Reson Imaging 21:645–650

    Article  PubMed  Google Scholar 

  6. Sorensen AG, Reimer P (2001) Imaging RM di perfusione cerebrale. Principi ed applicazioni correnti. CIC edizioni internazionali, Roma

    Google Scholar 

  7. Vonken EPA, Van Osch MJP, Willems PWA et al (2000) Repeated quantitative perfusion and contrast permeability measurement in the MRI examinations of a CNS tumor. Eur Radiol 10:1447–1451

    Article  PubMed  CAS  Google Scholar 

  8. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867

    PubMed  CAS  Google Scholar 

  9. Provenzale JM (2007) Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am J Roentgenol 188:11–23

    Article  PubMed  Google Scholar 

  10. Kremer S, Grand S, Rémy C et al (2004) Contribution of dynamic contrast MR imaging to differentiation between dural metastasis and meningioma. Neuroradiology 46:642–648

    Article  PubMed  CAS  Google Scholar 

  11. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas, classification with MR imaging. Radiology 174:411–415

    PubMed  CAS  Google Scholar 

  12. Essing M, Schkies M, Wenz F et al (2003) Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 228:193–199

    Article  Google Scholar 

  13. Rollin N, Guyoatat J, Steichenberger N et al (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intraaxial brain tumors. Neuroradiology 48:150–159

    Article  PubMed  CAS  Google Scholar 

  14. Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR. Radiology 223:11–29

    Article  PubMed  Google Scholar 

  15. Hakyemez B, Erdogan C, Bolca N et al (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824

    Article  PubMed  Google Scholar 

  16. Kitis O, Altay H, Calli C et al (2005) Minimum apparent diffusion coefficients in the evaluation of brains tumors. Eur J Radiol 55:393–400

    Article  PubMed  Google Scholar 

  17. Bükte Y, Paksoy Y, Genç E, Uca AU (2005) Role of diffusion-weighted MR in differential diagnosis of intracranial cyst lesions. Clin Radiol 60:375–383

    Article  PubMed  Google Scholar 

  18. Park SH, Chang KH, Song IC et al (2000) Diffusion-weighted MRI in cystic or necrotic intracranial lesions. Neuroradiology 42:716–721

    Article  PubMed  CAS  Google Scholar 

  19. Greco-Crasto S, Soffietti R, Rudà R et al (2007) Diffusion-weighted magnetic resonance imaging and ADC maps in the diagnosis of intracranial cystic or necrotic lesions. A retrospective study on 49 patients. Neuroradiol J 20:666–675

    Google Scholar 

  20. Hartman M, Jansen O, Heiland S et al (2001) Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 22:1738–1742

    Google Scholar 

  21. Al-Okaili RN, Krejza J, Wang S et al (2006) Advanced MR imaging. Techniques in the diagnosis of intraaxial brain tumors in adults. RadioGraphics 26:S173–S189

    Article  PubMed  Google Scholar 

  22. Bastin ME, Carpenter TK, Armitage PA et al (2006) Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol 27:402–408

    PubMed  CAS  Google Scholar 

  23. Forsting M, Weber J (2004) MR perfusion imaging: a tool for more than stroke. Eur Radiol 14(Suppl 5):M2–M7

    PubMed  Google Scholar 

  24. Tombach B, Heindel W (2002) Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol 12:1550–1556

    Article  PubMed  Google Scholar 

  25. Benner T, Reimer P, Erb G et al (2000) Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dosefinding study. J Magn Reson Imaging 12:371–380

    Article  PubMed  CAS  Google Scholar 

  26. Hakyemez B, Yildirim N, Erdogan C et al (2006) Meningiomas with conventional MRI findings resembling intraaxial tumors: can perfusionweighted MRI be helpful in differentiation? Neuroradiology 48:695–702

    Article  PubMed  Google Scholar 

  27. Uematsu H, Maeda M (2006) Doubleecho perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol 16:180–186

    Article  PubMed  Google Scholar 

  28. Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrastenhanced MR: confounding effect of elevated rCBV of oligodendroglimoas. AJNR Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  29. Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasm. AJR Am J Roentgenol 174:1147–1175

    PubMed  CAS  Google Scholar 

  30. Yang S, Wetzel S, Law M et al (2002) Dynamic contrast-enhanced MR imaging of gliomatosis cerebri. AJNR Am J Neuroradiol 23:350–355

    PubMed  Google Scholar 

  31. Yu A, Li K, Li H (2006) Value of diagnosis and differential diagnosis of MRI and MR spectroscopy in gliomatosis cerebri. Eur J Radiol 59:216–221

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzo, L., Crasto, S.G., Moruno, P.G. et al. Role of diffusion- and perfusion-weighted MR imaging for brain tumour characterisation. Radiol med 114, 645–659 (2009). https://doi.org/10.1007/s11547-009-0401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-009-0401-y

Keywords

Parole chiave

Navigation