Advertisement

La radiologia medica

, Volume 113, Issue 6, pp 779–798 | Cite as

Role of multidetector computed tomography in the anatomical definition of the left atrium-pulmonary vein complex in patients with atrial fibrillation. Personal experience and pictorial assay

  • K. Benini
  • M. Marini
  • M. Del Greco
  • G. Nollo
  • V. Manera
  • M. CentonzeEmail author
Cardiac Radiology/Cardioradiologia

Abstract

Purpose

This study aimed to illustrate the typical anatomical pattern and anatomical variants of the left atrium-pulmonary vein (LA-PV) complex studied by 16-slice multidetector computed tomography (MDCT) in a population of patients with atrial fibrillation (AF) undergoing percutaneous transcatheter left atrial ablation. Accurate knowledge of this anatomical region is fundamental for increasing the efficiency, efficacy and accuracy of the procedure and for reducing the risk of complications.

Materials and methods

From January 2004 to March 2007, we studied 75 patients (57 men, 18 women) affected by paroxysmal and chronic AF by using MDCT. In 63 patients, the MDCT examination was performed using retrospective cardiac electrocardiographic (ECG) gating and dose modulation, with reconstructions performed at 75% of R-R interval. In the remaining 12 patients, ECG gating was not possible due to high-frequency AF.

Results

We identified 286 PV: 157 right and 129 left. On the right side, eight PV were supernumerary and one was a common trunk, whereas on the left side, we found 22 common trunks and one supernumerary vein. In 61.3% of patients, the anatomical pattern was typical (two right and two left PV). In the remaining 38.7%, it was atypical [two right PV-left common trunk (26.6%); three right PV-two left PV (6.7%); three right PV-left common trunk (2.6%); three right PV-three left PV (1.3%); right common trunk-two left PV (1.3%)]. MDCT identified branching of the right inferior PV in 94.5%, of the right superior PV in 75.6%, of the left superior PV in 7.5% and of the left inferior PV in 7.5%; 3/8 of the right supernumerary veins presented branching. With respect to the left PV ostia, the position of the orifice of the 74 recognised appendages was high in 85.1%, intermediate in 12.1% and low in 2.8%. There was no association between PV anatomical variants and clinical presentation of AF (paroxysmal or chronic).

Conclusions

MDCT represents a fundamental diagnostic imaging tool in the anatomical definition of the LA-PV complex, which is characterised by considerable variability. Radiologists must be familiar with the anatomical variants and help the referring interventional electrophysiologist understand their importance.

Keywords

Multidetector computed tomography Atrial fibrillation Pulmonary veins Ablation 

Il ruolo della TCMD nella definizione anatomica del complesso atrio sinistro-vene polmonari nei pazienti affetti da fibrillazione atriale. Esperienza personale e rassegna iconografica

Riassunto

Obiettivo

Illustrare quadro tipico e varianti anatomiche del complesso atrio sinistro-vene polmonari (AS-VP) studiato con TC spirale multidetettore a 16 strati (TCMD) in una popolazione di pazienti affetti da fibrillazione atriale (FA) in attesa di essere sottoposti ad intervento di ablazione trans-catetere in atrio sinistro. La precisa conoscenza di questa regione anatomica è indispensabile per realizzare con maggiore efficacia, efficienza ed accuratezza la procedura terapeutica, riducendo le complicanze.

Materiali e metodi

Nel periodo compreso tra gennaio 2004 e marzo 2007 sono stati valutati con TCMD 75 pazienti (57 maschi e 18 femmine) affetti da FA parossistica e cronica. In 63 pazienti l’indagine TCMD è stata effettuata con gating cardiaco retrospettivo e modulazione della dose, ricostruendo la finestra temporale corrispondente al 75% dell’intervallo RR dell’ECG. Nei restanti 12 pazienti non è stato possibile utilizzare il gating cardiaco per la presenza di FA ad alta frequenza.

Risultati

Nei pazienti studiati sono state identificate 286 VP, 157 a destra e 129 a sinistra. A destra sono state riconosciute 8 vene soprannumerarie e 1 tronco comune mentre a sinistra 22 tronchi comuni e 1 vena soprannumeraria. Nel 61,3% dei pazienti il quadro inadeanatomico era tipico (2 VP destre e sinistre) e atipico nel restante 38,7% dei pazienti (26,6% 2 VP destre-tronco comune sinistro; 6,7% 3 VP destre-2 VP sinistre; 2,6% 3 VP destre-tronco comune sinistro; 1,3% 3 VP destre-3 VP sinistre; 1,3% tronco comune destro-2 VP sinistre). Nella definizione dei rami di confluenza pre-ostiali delle VP (branching), la TCMD ha identificato il branching della VP inferiore destra nel 94,5% dei casi, della VP superiore destra nel 75,6%, della VP superiore sinistra nel 7,5% e della VP inferiore sinistra nel 7,5%; 3/8 delle vene soprannumerarie destre presentavano branching. Rispetto all’ostio delle VP sinistre, l’orifizio delle 74 auricole identificate era in posizione alta nel 85,1% dei casi, in posizione intermedia nel 12,1% e bassa nel 2,8%. Non sono state rilevate associazioni tra varianti anatomiche delle VP e presentazione clinica della FA (parossistica o cronica).

Conclusioni

La TCMD è uno strumento diagnostico fondamentale per definire l’anatomia del complesso AS-VP, la cui variabilità anatomica è elevata. Il radiologo deve conoscere le varianti anatomiche e farne capire l’importanza all’elettrofisiologo interventista.

Parole chiave

Tomografia computerizzata multidetettore Fibrillazione atriale Vene polmonari Ablazione 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Falk R (2001) Atrial fibrillation. N Engl J Med 344:1067–1077PubMedCrossRefGoogle Scholar
  2. 2.
    Go AS, Hylek EM, Phillips KA et al (2001) Prevalence of diagnosed atrial fibrillation in adults. JAMA 285:2370–2375PubMedCrossRefGoogle Scholar
  3. 3.
    Feinberg WM, Blackshear JL, Laupacis A et al (1995) Prevalence, age distribution and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 155:469–473PubMedCrossRefGoogle Scholar
  4. 4.
    Santini M, De Ferrari GM, Pandozi C et al (2004) Atrial fibrillation requiring urgent medical care. Approach and outcome in the various department of admission. Data from the atrial Fibrillation/flutter Italian Registry (FIRE). Ital Heart J 5:205–213PubMedGoogle Scholar
  5. 5.
    Benjamin EJ, Wolf PA, D’Agostino RB et al (1998) Impact of atrial fibrillation on the risk of death. The Framingham Heart study. Circulation 98:946–952PubMedGoogle Scholar
  6. 6.
    Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an indipendent risk factor for stroke: the Framingham Study. Stroke 22:983–988PubMedGoogle Scholar
  7. 7.
    Luderitz B, Jung W (2000) Quality-oflife in patients with atrial fibrillation. Arch Intern Med 160:1749–1757PubMedCrossRefGoogle Scholar
  8. 8.
    Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226PubMedCrossRefGoogle Scholar
  9. 9.
    Allessie MA, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246PubMedCrossRefGoogle Scholar
  10. 10.
    Ravelli F, Allessie MA (1997) Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96:1686–1695PubMedGoogle Scholar
  11. 11.
    Ravelli F (2003) Mechano-electric feedback and atrial fibrillation. Prog Biophys Mol Biol 82:137–149PubMedCrossRefGoogle Scholar
  12. 12.
    Cox JL, Boineau JP, Schuessler RB et al (1993) Five-year experience with the maze procedure for atrial fibrillation. Ann Thorac Surg 56:814–824PubMedGoogle Scholar
  13. 13.
    Cox JL (2004) Surgical treatment of atrial fibrillation: a review. Europace 5:S20–S29PubMedCrossRefGoogle Scholar
  14. 14.
    Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666PubMedCrossRefGoogle Scholar
  15. 15.
    Haissaguerre M, Jais P, Shah DC et al (2000) Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101:1409–1417PubMedGoogle Scholar
  16. 16.
    Keith A, Flack M (1907) The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41:172–189PubMedGoogle Scholar
  17. 17.
    Nathan H, Eliakim M (1966) The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation 34:412–422PubMedGoogle Scholar
  18. 18.
    Pappone C, Rosanio S, Oreto G et al (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102:2619–2628PubMedGoogle Scholar
  19. 19.
    Pappone C, Oreto G, Rosanio S et al (2001) Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation 104:2539–2544PubMedCrossRefGoogle Scholar
  20. 20.
    Arentz T, Jander N, von Rosenthal J et al (2003) Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. European Heart Journal 24:963–969PubMedCrossRefGoogle Scholar
  21. 21.
    Dill T, Neumann T, Ekinci O et al (2003) Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 107:845–850PubMedCrossRefGoogle Scholar
  22. 22.
    Ravenel JG, McAdams HP (2002) Pulmonary venous infarcition after radiofrequency ablation for atrial fibrillation. AJR Am J Roentgenol 178:664–666PubMedGoogle Scholar
  23. 23.
    Lacomis JM, Wigginton W, Fuhrman C et al (2003) Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. RadioGraphics 23:S35–S48PubMedCrossRefGoogle Scholar
  24. 24.
    Ghaye B, Szapiro D, Dacher JN et al (2003) Percutaneous ablation for atrial fibrillation: the role of cross-sectional imaging. RadioGraphics 23:S19–S33PubMedCrossRefGoogle Scholar
  25. 25.
    Schwartzman D, Lacomis J, Wigginton G (2003) Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol 41:1349–1357PubMedCrossRefGoogle Scholar
  26. 26.
    Perez-Lugones A, Schvartzman PR, Schweinkert R et al (2003) Three-dimensional reconstruction of pulmonary veins in patients with atrial fibrillation and controls: morphological characteristics and different veins. Pacing Clin Electrophysiol 26:8–15PubMedCrossRefGoogle Scholar
  27. 27.
    Marom EM, Herndon JE, Kim Y-H et al (2004) Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230:43–49CrossRefGoogle Scholar
  28. 28.
    Maksimovic R, Cademartiri F, Scholten M et al (2004) Sixteen-row multislice computed tomography in the assessment of pulmonary veins prior to ablative treatment: validation vs conventional venography and study of reproducibility. Eur Radiol 14:368–374CrossRefGoogle Scholar
  29. 29.
    Cronin P, Sneider MB, Kazerooni EA et al (2004) MDCT of the left atrium and pulmonary veins in planning radiofrequency ablation for atrial fibrillation: a how-to guide. AJR Am J Roentgenol 183:767–778PubMedGoogle Scholar
  30. 30.
    Centonze M, Del Greco M, Nollo G et al (2005) The role of multidetector CT in the evaluation of the left atrium and pulmonary veins anatomy before and after radio-frequency catheter ablation for atrial fibrillation. Preliminary results and work in progress. Radiol Med 110:52–60Google Scholar
  31. 31.
    Jongbloed MRM, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multidetector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation-initial experience. Radiology 234:702–709PubMedCrossRefGoogle Scholar
  32. 32.
    Kim Y-H, Marom EM, Herndon JE et al (2005) Pulmonary vein diameter, cross sectional area and shape: CT analysis. Radiology 235:43–49PubMedCrossRefGoogle Scholar
  33. 33.
    Calkins H, Brugada J, Packer DL et al (2007) HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 4:816–861PubMedCrossRefGoogle Scholar
  34. 34.
    Calkins H, Brugada J, Packer DL et al (2007) HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Europace 9:335–379PubMedCrossRefGoogle Scholar
  35. 35.
    Ho SY, Sanchez-Quintana D, Cabrera JA et al (1999) Anatomy of the left atrium: implications for radiofrequency ablation for atrial fibrillation. J Cardiovascular Electrophysiol 10:1525–1533CrossRefGoogle Scholar
  36. 36.
    Weiss C, Gocht A, Willems S et al (2002) Impact of the distribution and structure of myocardium in the pulmonary veins for radiofrequency ablation of atrial fibrillation. Pacing Clin Electrophysiol 25:1352–1356PubMedCrossRefGoogle Scholar
  37. 37.
    Moubarak JB, Rozwadowski JV, Strzalka CT (2000) Pulmonary veinsleft atrial junction anatomic and histological study. Pacing Clin Electrophisiol. 23:1836–1838Google Scholar
  38. 38.
    Kato R, Lickfett L, Meininger G et al (2003) Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 107:2004–2010PubMedCrossRefGoogle Scholar
  39. 39.
    Cirillo S, Bonamini R, Gaita F et al (2004) Magnetic resonance angiography virtual endoscopy in the assessment of pulmonary veins before radiofrequency ablation procedures for atrial fibrillation. Eur Radiol 14:2053–2060PubMedCrossRefGoogle Scholar
  40. 40.
    Cirillo S, Tosetti I, Gaita F et al (2005) Magnetic resonance angiography of the pulmonary veins before and after radiofrequency ablation for atrial fibrillation. Radiol Med 109:488–499Google Scholar
  41. 41.
    Moore KL (1973) The developing human (clinically oriented embryology). Saunders, PhiladelphiaGoogle Scholar
  42. 42.
    Bliss DF 2nd, Hutchins GM (1995) The dorsal mesocardium and development of the pulmonary veins in human embryos. Am J Cardiovasc Pathol 5:55–67Google Scholar
  43. 43.
    Chung B, Yucel EK, Rolnick J et al (2002) Morphology and variations of the pulmonary veins: classification and dimensions using 3D-CTA models (abstr). Radiology 225(P):155Google Scholar
  44. 44.
    Budorick NE, McDonald V, Flisak ME et al (1989) The pulmonary veins. Semin Roentgenol 24:127–140PubMedCrossRefGoogle Scholar
  45. 45.
    Healey JE (1952) An anatomic survey of anomalous pulmonary veins: their clinical significance. J Thorac Surg 23:433–444PubMedGoogle Scholar
  46. 46.
    Tsao HM, Wu MH, Yu WC et al (2001) Role of right middle pulmonary vein in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 12:1353–1357PubMedCrossRefGoogle Scholar
  47. 47.
    Yazar F, Ozdogmus O, Tuccar E et al (2002) Drainage patterns of middle lobe vein of right lung: an anatomical study. Eur J Cardiothorac Surg 22:717–720PubMedCrossRefGoogle Scholar
  48. 48.
    Sugimoto S, Izumiyama O, Yamashita A et al (1998) Anatomy of inferior pulmonary vein should be clarified in lower lobectomy. Ann Thorac Surg 66:1799–1800PubMedCrossRefGoogle Scholar
  49. 49.
    Kim DT, Lai AC, Hwang C et al (2000) The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. JACC 36:1324–1327PubMedGoogle Scholar
  50. 50.
    Jongbloed MRM, Bax JJ, Lamb HJ et al (2005) Multislice computed tomography versus intracardiac echocardiography to evaluate the pulmonary veins before radiofrequency catheter ablation of atrial fibrillation. A head to head comparison. JACC 45:343–350PubMedGoogle Scholar
  51. 51.
    Cappato R, Calkins H, Chen S-A et al (2005) Worldwide survey on the methodestro, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation 111:1100–1105PubMedCrossRefGoogle Scholar
  52. 52.
    Tsao HM, Yu WC, Cheng HC et al (2001) Pulmonary vein dilation in patients with atrial fibrillation: detection by magnetic resonance imaging. J Cardiovasc Electrophysiol 12:1333–1334CrossRefGoogle Scholar
  53. 53.
    Saad BE, Rossillo A, Saad CP et al (2003) Pulmonary vein stenosis after radiofrequency ablation of atrial fibrillation: functional characterization, evolution, and influence of the ablation strategy. Circulation 108:3102–3107PubMedCrossRefGoogle Scholar
  54. 54.
    Saad BE, Marrouche NF, Saad CP et al (2003) Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med 138:634–638PubMedGoogle Scholar
  55. 55.
    Jin Y, Ross DL, Thomas SP (2004) Pulmonary vein stenosis and remodeling after electrical isolation for treatment of atrial fibrillation: short-and medium-term follow-up. PACE 27:1362–1370PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • K. Benini
    • 1
    • 4
  • M. Marini
    • 2
  • M. Del Greco
    • 2
  • G. Nollo
    • 3
  • V. Manera
    • 4
  • M. Centonze
    • 4
    Email author
  1. 1.Istituto di Radiologia dell’Università degli Studi di Verona, Policlinico G.B. RossiVeronaItaly
  2. 2.Laboratorio di ElettrofisiologiaUnità Operativa di Cardiologia, Ospedale S. Chiara di TrentoTrentoItaly
  3. 3.Laboratorio di Biofisica e BiosegnaliDipartimento di Fisica dell’Università di TrentoTrentoItaly
  4. 4.Dipartimento di Radiodiagnostica, APSS di TrentoU. O. di Radiologia, Ospedale S. Chiara di TrentoTrentoItaly

Personalised recommendations