Abstract
Purpose
This article discusses the possible pathophysiological conditions responsible for magnetic resonance imaging (MRI) finding of transient focal lesions in the splenium of the corpus callosum on the basis of our experience and a review of the literature.
Materials and methods
In six patients undergoing computed tomography (CT) and MRI examinations, focal nonhemorrhagic lesions of the splenium of the corpus callosum were incidentally discovered. Patients had been referred for suspected encephalitis (n=2), dural sinus thrombosis (n=1) and multiple sclerosis (n=3). MRI examinations were repeated after 4, 8 and 12 weeks and in two cases also after 6 and 9 months. MRI and medical records were retrospectively reviewed with respect to patients’ clinical history, medication and laboratory findings to define lesion aetiology.
Results
In all patients, the lesions were isolated, reversible and with no contrast enhancement. In four patients, the lesion disappeared after complete remission of the underlying disease, whereas in two patients, they persisted for 6 and 9 months, respectively.
Conclusions
To our knowledge and according to previous reports, the fact that these lesions are detected in a relatively large number of conditions with heterogeneous etiopathogenetic factors leads to the hypothesis that a common underlying pathophysiological mechanism that, considering signal characteristic, reversibility and white matter location, could be represented by vasogenic oedema.
Riassunto
Obiettivi
Formulare delle ipotesi fisio-patogenetiche responsabili della comparsa all’imaging RM di lesioni focali transitorie nello splenio del corpo calloso, oltre che identificarne il significato e le eventuali correlazioni cliniche in base alla nostra esperienza e ai dati riportati finora in letteratura.
Materiali e metodi
In 6 pazienti sottoposti a indagini TC e RM sono state riscontrate incidentalmente lesioni focali non emorragiche, isolate, nel contesto dello splenio del corpo calloso. I pazienti giungevano alla nostra osservazione con sospetto clinico di patologia infettiva (2), trombotica (1), demielinizzante (3) dell’encefalo. In tutti i casi sono stati effettuati controlli RM seriati nel tempo a distanza di 4–8–12 settimane e in 2 pazienti anche dopo 6 e 9 mesi. Le immagini RM unitamente ai dati clinico-laboratoristici sono state analizzate retrospettivamente al fine di definire l’eziologia di tali lesioni.
Risultati
In tutti i pazienti le lesioni si sono rivelate focali, prive di enhancement dopo mezzo di contrasto (MdC) e reversibili. In 4 pazienti le lesioni sono scomparse dopo la remissione completa della patologia di base mentre in 2 le alterazioni sono persistite rispettivamente sino a 6 e 9 mesi.
Conclusioni
La spiegazione definitiva di tale reperto appare ancora controversa. Secondo la nostra esperienza e quella di altri autori, essendo il riscontro di tali lesioni comune a un ampio spettro di condizioni patologiche con fattori eziopatogenetici eterogenei, è ipotizzabile che attraverso un comune, complesso meccanismo fisiopatologico tali fattori possano creare squilibri responsabili della comparsa di edema vasogenico che si esprime in un’alterazione del segnale RM nello splenio del corpo calloso.
This is a preview of subscription content, access via your institution.
References/Bibliografia
- 1.
Chason DP, Fleckenstein JL, Ginsburg ML et al. (1996) Transient splenial edema in epilepsy: MR imaging evaluation. Presented at the annual meeting of the American Society of Neuroradiology; June 21–27, 1996; Seattle, WA
- 2.
Kim SS, Chang K-H, Kim ST et al (1999) Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity? AJNR 20:125–129
- 3.
Behrens S, Pohlmann-Eden B (2001) Reversible phenytoin-induced extrapontine myelinolysis. Nervenarzt 72:453–455
- 4.
Tada H, Takanashi J, Barkovich AJ et al (2004) Clinically mild encephalitis/encephalopathy with a reversible splenial lesion. Neurology 63:1854–1858
- 5.
Kobata R, Tsukahara H, Nakai A et al (2002) Transient MR signal changes in the splenium of the corpus callosum in rotavirus encephalopathy: value of diffusion-weighted imaging. J Comput Assist Tomogr 26:825–828
- 6.
Kato Z, Kozawa R, Hashimoto K, Kondo N (2003)Transient lesion in the splenium of the corpus callosum in acute cerebellitis. J Child Neurol 18:291–292
- 7.
Assencio-Ferreira VJ, Lucci Mussi M, Monteiro de Paula Guirado V, Esteves Veiga JC (2005) Lesão transitória no esplênio do corpo caloso em criança epiléptica com glioma cerebral de baixo grau. Arq Neuro-Psiquiatr 63:171–172
- 8.
Ogura H, Takaoka M, Kishi M et al (1998) Reversible MR findings of hemolytic uremic syndrome with mild encephalopathy. Am J Neuroradiol 19:1144–1145
- 9.
Kobuchi N, Tsukahara H, Kawamura Y, e al (2003) Reversable diffusion weighted MR findings of Salmonella enteritidis associated encefalopathy. Eur Neurol 49:182–188
- 10.
Hackett PH, Yarnell PR, Hill R et al (1998) High-altitude cerebral edema evaluated with magnetic resonance imaging. JAMA 280:1920–1925
- 11.
Biegon A, Eberling JL, Richardson BC et al (1994) Human corpus callosum in aging and Alzheimer’s disease: a magnetic resonance imaging study. Neurobiol Aging 15:393–397
- 12.
Georgy BA, Hesselink JR, Jernigan TL (1993) MR imaging of the corpus callosum. AJR Am J Roentgenol 160:949–955
- 13.
Kieburtz KD, Ketonen L, Zettelmaier AE et al (1990) MRI findings in HIV cognitive impairment. Arch Neurol 47:643–645
- 14.
Chang KH, Cha SH, Han MH et al (1992) Marchiafava-Bignami disease: serial changes in corpus callosum on MRI. Neuroradiology 34:480–482
- 15.
Tobita M, Mochizuki H, Takahashi S et al (1997) A case of Marchiafava-Bignami disease with complete recovery: sequential imaging documenting improvement of callosal lesions. Tohoku J Exp Med 182:175–179
- 16.
Takanashi J, Barkovich AJ, Yamaguchi K, Kohno T. Influenza-associated encephalitis/encephalopathy with a reversible lesion in the splenium of the corpus callosum: a case report and literature review. AJNR Am J Neuroradiol 25:798–802
- 17.
Polster T, Hoppe M, Ebner A (2001) Transient lesion in the splenium of the corpus callosum: three further cases in epileptic patients and a pathophysiological hypothesis. J Neurol Neurosurg Psychiatry 70:459–463
- 18.
Cohen-Gadol AA, Britton JW, Jack CR Jr et al (2002) Transient postictal magnetic resonance imaging abnormality of the corpus callosum in a patient with epilepsy. Case report and review of the literature. J Neurosurg 97:714–717
- 19.
Ziegler DK (1978) Toxicity to the nervous system of diphenylhydantoin: a review. Int J Neurol 11:383–400
- 20.
Ramirez JA, Mendell JR, Warmolts JR, Griggs RC (1986) Phenytoin neuropathy: structural changes in the sural nerve. Ann Neurol 19:162–167
- 21.
Graham DI, Lantos PL (1997) Greenfield’s Neuropathology, 6th ed. Arnold, London
- 22.
Butler WH, Ford GP, Newberne JW (1987) A study of the effects of vigabatrin on the central nervous system and retina of Sprague Dawley and Lister-Hooded rats. Toxicol Pathol 15:143–148
- 23.
Graham D (1989) Neuropathology of vigabatrin. Br J Clin Pharmacol 27(Suppl 1):43S–45S
- 24.
Gibson JP, Yarrington JT, Loudy DE et al (1990) Chronic toxicity studies with vigabatrin, a GABA-transaminase inhibitor. Toxicol Pathol 18:225–238
- 25.
Shiihara T, Kato M, Hayasaka K (2005) Clinically mild encephalitis/encephalopathy with a reversible splenial lesion. Neurology 64:1487
- 26.
Mirsattari SM, Lee DH, Jones MW, Blume WT (2003)Transient lesion in the splenium of the corpus callosum in an epileptic patient. Neurology 60:1838–1841
- 27.
Tsugane S, Suzuki Y, Takayasu M et al (1994) Effects of vasopressin on regional cerebral blood flow in dogs. J Auton Nerv Sys 49:S133–S136
- 28.
Doczi T, Szerdahelyi P, Gulya K et al (1982) Brain water accumulation after central administration of vasopressin. Neurosurgery 11:402–407
- 29.
Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally-released vasopressin. Brain Res 143:191–194
- 30.
Krause KH, Rascher W, Berlit P (1983) Plasma arginine vasopressin concentrations in epileptics under monotherapy. J Neurol 230:193–196
- 31.
Stephens WP, Coe JY, Baylis PH (1978) Plasma arginine vasopressin concentrations and antidiuretic action of carbamazepine. BMJ i:1445–1447
- 32.
Soelberg Sørensen P, Hammer M (1984) Effects of long-term carbamazepine treatment on water metabolism and plasma vasopressin concentration. Eur J Clin Pharmacol 26:719–722
- 33.
Bradley WB (1987) Pathophysiologic correlates of signal alteration. In: Brant-Zawadzki M, Norman D (eds) Magnetic Resonance Imaging of the central nervous system. Raven Press, New York, NY pp 29–33
- 34.
Simmonson TM, Yuh WTC (1996) Stroke and cerebral ischemia. In: Edelman RR, Zlatkin MB, Hesselink JR (eds) Clinical Magnetic Resonance Imaging, 2nd ed. WB Saunders, Philadelphia, PA, pp 767–773
- 35.
Fishman RA (1975) Brain edema. N Engl J Med 293:706–711
- 36.
Hauser RA, Lacey DM, Knight MR (1988) Ipertensive encefalopathy: magnetic resonance imaging demonstration of reversible cortical and white matter lesions. Arch Neurol 45:1078–1083
- 37.
Raroque HG, Orrison WW, Rosemberg GA (1990) Neurologic involvement in toxiemia of pregnancy: reversible MRI lesions. Neurology 40:167–169
- 38.
Yaffe K, Ferriero D, Barkovich J, Rowley H (1995) Reversible MRI abnormalities following seizures. Neurology 45:104–108
- 39.
Krasney J (1997) Cerebral hemodynamics and high altitude cerebral edema. In: Houston C, Coates G (eds) Hypoxia: women at altitude. Queen City Press, Burlington, WT, pp 254–268
- 40.
Joo F, Klatzo I (1989) Role of cerebral endothelium in brain oedema. Neurol Res 11:67–75
- 41.
Schilling L, Wahl M (1997) Brain edema: pathogenesys and therapy. Kidney Int 51(suppl 59):s69–s75
- 42.
Plateel M, Dehouck M-P, Torpier G, Cecchelli R, Tessier E (1995) Hipoxia increases the susceptibility to oxidant stress and the permeability of the bloodbrain-barrier endothelial cell monolyer. J Neuro-Chem. 65:2138–2145
- 43.
Bartsch P, Shaw S, Francioli M, Gnadinger MP, Weidmann P (1988) Atrial natriuretic peptide in acute mountain sickness. J Appl Phisiol. 65:1929–1937
- 44.
Richalet JP, Hormych A, Rathat C, Aumont J, Larmignant P, Remy P (1991) Plasma prostaglandins leukotrienes and thromboxane in acute high altitude hypoxia. Respir Physion 85:205–215
- 45.
Neeraj B. Chepuri, Yi-Fen Yen, Jonathan H. Burdette, Hong Li, Dixon M. Moody, and Joseph A. Maldjian (2002) Diffusion Anisotropy in the Corpus Callosum AJNR Am J Neuroradiol 23:803–808
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Conti, M., Salis, A., Urigo, C. et al. Transient focal lesion in the splenium of the corpus callosum: MR imaging with an attempt to clinical-physiopathological explanation and review of the literature. Radiol med 112, 921–935 (2007). https://doi.org/10.1007/s11547-007-0197-9
Received:
Accepted:
Published:
Issue Date:
Key words
- Magnetic resonance imaging
- Corpus callosum
- Splenium
- Focal lesions
Parole chiave
- Risonanza magnetica
- Corpo calloso
- Splenio
- Lesioni focali