Alva L (2004) Potato Nitrogen Management. Journal of Vegetable Crop Production 10:97–132. https://doi.org/10.1300/J068v10n01_10
Article
Google Scholar
B-CGMS team Belgian Crop Growth Monitoring System, 2017, 2018 and 2019 reports (n.d.) In: Belgian Crop Growth Monitoring System (B-CGMS). http://b-cgms.cra.wallonie.be/. Accessed 3 Mar 2020
Bélanger G, Walsh JR, Richards JE et al (2001) Critical nitrogen curve and nitrogen nutrition index for potato in Eastern Canada. Am J Pot Res 78:355–364. https://doi.org/10.1007/BF02884344
Article
Google Scholar
Ben Abdallah F, Olivier M, Goffart JP, Minet O (2016) Establishing the nitrogen dilution curve for potato cultivar Bintje in Belgium. Potato Res 59:241–258. https://doi.org/10.1007/s11540-016-9331-y
CAS
Article
Google Scholar
Bernardi M, Deline J, Durand W, Zhang N (2016) Crop yield forecasting: methodological and institutional aspects. FAO, Rome
Google Scholar
Bontemps S, Bajec K, Cara C et al (2020) Sen4CAP System Software User Manual v1.1
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324
Article
Google Scholar
Brostaux Y (2005) “Etude du classement par forêts aléatoires d'échantillons perturbés à forte structure d'interaction.” Unpublished doctoral thesis, ULiège. GxABT - Liège Université. Gembloux Agro-Bio Tech
Chambenoit C, Laurent F, Machet JM, Boizard H (2004) Development of a decision support system for nitrogen management on potatoes. In: MacKerron DKL, Haverkort AJ (eds) Decision support systems in potato production: bringing models to practice. Wageningen Academic Publishers, pp 55–67
Clevers JGPW (1989) Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sensing of Environment 29:25–37. https://doi.org/10.1016/0034-4257(89)90076-X
Article
Google Scholar
Clevers J, Kooistra L, van den Brande M (2017) Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing 9:405. https://doi.org/10.3390/rs9050405
Article
Google Scholar
Daughtry CST, Walthall CL, Kim MS et al (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74:229–239. https://doi.org/10.1016/S0034-4257(00)00113-9
Article
Google Scholar
Delegido J, Verrelst J, Alonso L, Moreno J (2011) Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 11:7063–7081
Article
Google Scholar
Delloye C, Weiss M, Defourny P (2018) Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sensing of Environment 216:245–261. https://doi.org/10.1016/j.rse.2018.06.037
Article
Google Scholar
Drusch M, Del Bello U, Carlier S et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment 120:25–36. https://doi.org/10.1016/j.rse.2011.11.026
Article
Google Scholar
Duchenne T, Machet JM, Martin M (1997) Potatoes. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin, Heidelberg, pp 119–130
Chapter
Google Scholar
Errebhi M, Rosen CJ, Gupta SC, Birong DE (1998) Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90:10–15. https://doi.org/10.2134/agronj1998.00021962009000010003x
Article
Google Scholar
Fox RH, Walthall CL (2008) Crop monitoring technologies to assess nitrogen status. In: Nitrogen in agricultural systems. John Wiley & Sons, Ltd, pp 647–674
Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing 82:83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007
Article
Google Scholar
Giletto CM, Echeverría HE (2012) Critical nitrogen dilution curve for processing potato in Argentinean humid pampas. Am J Pot Res 89:102–110. https://doi.org/10.1007/s12230-011-9226-z
Article
Google Scholar
Giletto CM, Echeverría HE (2015) Critical nitrogen dilution curve in processing potato cultivars. Am J Plant Sci 6:3144–3156. https://doi.org/10.4236/ajps.2015.619306
CAS
Article
Google Scholar
Giletto CM, Reussi Calvo NI, Sandaña P et al (2020) Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato. Eur J Agron 119:126114. https://doi.org/10.1016/j.eja.2020.126114
CAS
Article
Google Scholar
Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281
CAS
Article
Google Scholar
Gitelson AA, Gritz †Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160:271–282. https://doi.org/10.1078/0176-1617-00887
CAS
Article
PubMed
Google Scholar
Goffart J-P, Olivier M (2004) Management of N-fertilization of the potato crop using total N-advice software and in-season chlorophyll meter measurements. In: Haverkort AJ, MacKerron DKL (eds). Wageningen Academic Publishers, Decision support systems in potato production, pp 68–83
Google Scholar
Goffart J-P, Olivier M, MacKerron DKL et al (2000) Spatial and temporal aspects of sampling of potato crops for nitrogen analysis. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen Academic Publishers, Wageningen, pp 83–102
Google Scholar
Goffart J-P, Olivier M, Destain J-P (2005) Presentation of a decision support system (DSS) for nitrogen management in potato production to improve the use of resources. In: Haverkort AJ, Struik PC (eds) Potato in progress: science meets practice. Wageningen Academic Publishers, pp 134–142
Goffart J-P, Olivier M, Frankinet M (2008) Potato crop nitrogen status assessment to improve n fertilization management and efficiency: past–present–future. Potato Res 51:355–383. https://doi.org/10.1007/s11540-008-9118-x
CAS
Article
Google Scholar
Goffart J-P, Gobin A, Delloye C, Curnel Y (2017) Crop spectral reflectance to support decision making on crop nutrition. International Fertiliser Society, Colchester, p 28
Google Scholar
Greenwood DJ, Lemaire G, Gosse G et al (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66:425–436
CAS
Article
Google Scholar
Haboudane D, Miller JR, Tremblay N et al (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81:416–426. https://doi.org/10.1016/S0034-4257(02)00018-4
Article
Google Scholar
Hack H, Gall H, Klemke T, et al (1993) The BBCH scale for phenological growth stages of potato (Solanum tuberosum L.). In: Proceedings of the 12th annual congress of the European Association for Potato Research, pp 153–154
Hatfield JL, Gitelson AA, Schepers JS, Walthall CL (2008) Application of spectral remote sensing for agronomic decisions. Agronomy Journal 100:S-117–S-131. https://doi.org/10.2134/agronj2006.0370c
CAS
Article
Google Scholar
Haverkort AJ, Franke AC, Steyn JM et al (2015) A robust potato model: LINTUL-POTATO-DSS. Potato Research 58:313–327. https://doi.org/10.1007/s11540-015-9303-7
Article
Google Scholar
Herrmann I, Karnieli A, Bonfil DJ et al (2010) SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing 31:5127–5143. https://doi.org/10.1080/01431160903283892
Article
Google Scholar
Herrmann I, Pimstein A, Karnieli A et al (2011) LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment 115:2141–2151. https://doi.org/10.1016/j.rse.2011.04.018
Article
Google Scholar
Jacques DC, Kergoat L, Hiernaux P et al (2014) Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands. Remote Sensing of Environment 153:40–49. https://doi.org/10.1016/j.rse.2014.07.027
Article
Google Scholar
Jaramaz D, Perovic V, Belanovic S (2013) The ESA Sentinel-2 mission vegetation variables for remote sensing of plant monitoring
Jongschaap REE, Booij R (2004) Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation and Geoinformation 5:205–218. https://doi.org/10.1016/j.jag.2004.03.002
Article
Google Scholar
Lacaux JP, Tourre YM, Vignolles C et al (2007) Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley fever epidemics in Senegal. Remote Sensing of Environment 106:66–74. https://doi.org/10.1016/j.rse.2006.07.012
Article
Google Scholar
le Maire G, François C, Dufrêne E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89:1–28. https://doi.org/10.1016/j.rse.2003.09.004
Article
Google Scholar
MacKerron DKL (2000) Perspectives for use in practice—How can assessment of plant and CNS be used in practice. In: Management of nitrogen and water in potato production. Wageningen Academic Publishers, pp 103–110
Meier U (1997) Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-Verlag
Google Scholar
Morier T, Cambouris AN, Chokmani K (2015) In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agronomy Journal 107:1295–1309. https://doi.org/10.2134/agronj14.0402
Article
Google Scholar
Olivier M, Goffart J-P, Ledent J-F (2006) Threshold value for chlorophyll meter as decision tool for nitrogen management of potato. Agronomy Journal 98:496–506. https://doi.org/10.2134/agronj2005.0108
CAS
Article
Google Scholar
Perry EM, Roberts DA (2008) Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress in an annual crop. Agronomy Journal 100:1211–1219. https://doi.org/10.2134/agronj2007.0306
CAS
Article
Google Scholar
Radoux J, Chome G, Jacques DC et al (2016) Sentinel-2’s potential for sub-pixel landscape feature detection. Remote Sensing 8. https://doi.org/10.3390/rs8060488
Schleicher TD, Bausch WC, Delgado JA, Ayers PD (2001) Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. In: 2001 ASABE Annual Meeting. American Society of Agricultural and Biological Engineers, p 1
Google Scholar
Shenk JS, Westerhaus MO (1993) Analysis of agriculture and food products by near infrared reflectance spectroscopy. Infrasoft International, Port Matilda, PA 116
Vincini M, Frazzi E, D’Alessio P (2008) A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agric 9:303–319. https://doi.org/10.1007/s11119-008-9075-z
Article
Google Scholar
Wang L, Zhou X, Zhu X et al (2016) Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal 4:212–219. https://doi.org/10.1016/j.cj.2016.01.008
Article
Google Scholar
Weiss M, Baret F (2016) S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Version 1.1
Wu J, Wang D, Rosen CJ, Bauer ME (2007) Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research 101:96–103. https://doi.org/10.1016/j.fcr.2006.09.014
Article
Google Scholar
Zhou Z, Jabloun M, Plauborg F, Andersen MN (2018) Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato. Computers and Electronics in Agriculture 144:154–163. https://doi.org/10.1016/j.compag.2017.12.005
Article
Google Scholar