Skip to main content

In-Season Potato Crop Nitrogen Status Assessment from Satellite and Meteorological Data

Abstract

For a conventional potato crop, splitting nitrogen (N) application is recognised as an efficient strategy to improve tuber yield and quality and to mitigate N losses to the environment. This approach requires the assessment of in-season crop N status for decisions on supplemental mineral N fertiliser application. This study focuses on the assessment of potato crop biophysical variables useful to establish crop N status. Field, satellite and meteorological data were collected in farmer’s fields during 3 years (2017–2019) with contrasted meteorological conditions. Degree days (DD) and water balance from planting date were computed from meteo data, and a selection of relevant vegetation indices (VIs) was derived from Sentinel-2 reflectance. Multiple linear regression (MLR) and random forest regression (RFR) models predicting shoots biomass, shoots N content and shoots N uptake from a combination of meteo and/or satellite-based variables were defined and evaluated. The best combinations integrate DD and two to four VIs and perform with cross-validation RMSE of about 0.38 DM t ha−1, 0.41%, 21 kg ha−1 for MLR and 0.32 DM t ha−1, 0.31%, 19 kg ha−1 for RFR. Despite these performances, MLR was shown to be more robust. From these estimated variables, two methods are proposed to derive total N uptake and nitrogen nutrition index. The most relevant method uses shoots N uptake and biomass. It allows future estimation of in-season supplemental N fertiliser to be applied to reach a targeted tuber yield.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data Availability

Data is stored on Walloon Agricultural Research Center (CRA-W) servers and can be made available on demand through specific agreement.

References

  • Alva L (2004) Potato Nitrogen Management. Journal of Vegetable Crop Production 10:97–132. https://doi.org/10.1300/J068v10n01_10

    Article  Google Scholar 

  • B-CGMS team Belgian Crop Growth Monitoring System, 2017, 2018 and 2019 reports (n.d.) In: Belgian Crop Growth Monitoring System (B-CGMS). http://b-cgms.cra.wallonie.be/. Accessed 3 Mar 2020

  • Bélanger G, Walsh JR, Richards JE et al (2001) Critical nitrogen curve and nitrogen nutrition index for potato in Eastern Canada. Am J Pot Res 78:355–364. https://doi.org/10.1007/BF02884344

    Article  Google Scholar 

  • Ben Abdallah F, Olivier M, Goffart JP, Minet O (2016) Establishing the nitrogen dilution curve for potato cultivar Bintje in Belgium. Potato Res 59:241–258. https://doi.org/10.1007/s11540-016-9331-y

    CAS  Article  Google Scholar 

  • Bernardi M, Deline J, Durand W, Zhang N (2016) Crop yield forecasting: methodological and institutional aspects. FAO, Rome

    Google Scholar 

  • Bontemps S, Bajec K, Cara C et al (2020) Sen4CAP System Software User Manual v1.1

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Brostaux Y (2005) “Etude du classement par forêts aléatoires d'échantillons perturbés à forte structure d'interaction.” Unpublished doctoral thesis, ULiège. GxABT - Liège Université. Gembloux Agro-Bio Tech

  • Chambenoit C, Laurent F, Machet JM, Boizard H (2004) Development of a decision support system for nitrogen management on potatoes. In: MacKerron DKL, Haverkort AJ (eds) Decision support systems in potato production: bringing models to practice. Wageningen Academic Publishers, pp 55–67

  • Clevers JGPW (1989) Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sensing of Environment 29:25–37. https://doi.org/10.1016/0034-4257(89)90076-X

    Article  Google Scholar 

  • Clevers J, Kooistra L, van den Brande M (2017) Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing 9:405. https://doi.org/10.3390/rs9050405

    Article  Google Scholar 

  • Daughtry CST, Walthall CL, Kim MS et al (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74:229–239. https://doi.org/10.1016/S0034-4257(00)00113-9

    Article  Google Scholar 

  • Delegido J, Verrelst J, Alonso L, Moreno J (2011) Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 11:7063–7081

    Article  Google Scholar 

  • Delloye C, Weiss M, Defourny P (2018) Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sensing of Environment 216:245–261. https://doi.org/10.1016/j.rse.2018.06.037

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment 120:25–36. https://doi.org/10.1016/j.rse.2011.11.026

    Article  Google Scholar 

  • Duchenne T, Machet JM, Martin M (1997) Potatoes. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin, Heidelberg, pp 119–130

    Chapter  Google Scholar 

  • Errebhi M, Rosen CJ, Gupta SC, Birong DE (1998) Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90:10–15. https://doi.org/10.2134/agronj1998.00021962009000010003x

    Article  Google Scholar 

  • Fox RH, Walthall CL (2008) Crop monitoring technologies to assess nitrogen status. In: Nitrogen in agricultural systems. John Wiley & Sons, Ltd, pp 647–674

  • Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing 82:83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

    Article  Google Scholar 

  • Giletto CM, Echeverría HE (2012) Critical nitrogen dilution curve for processing potato in Argentinean humid pampas. Am J Pot Res 89:102–110. https://doi.org/10.1007/s12230-011-9226-z

    Article  Google Scholar 

  • Giletto CM, Echeverría HE (2015) Critical nitrogen dilution curve in processing potato cultivars. Am J Plant Sci 6:3144–3156. https://doi.org/10.4236/ajps.2015.619306

    CAS  Article  Google Scholar 

  • Giletto CM, Reussi Calvo NI, Sandaña P et al (2020) Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato. Eur J Agron 119:126114. https://doi.org/10.1016/j.eja.2020.126114

    CAS  Article  Google Scholar 

  • Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281

    CAS  Article  Google Scholar 

  • Gitelson AA, Gritz †Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160:271–282. https://doi.org/10.1078/0176-1617-00887

    CAS  Article  PubMed  Google Scholar 

  • Goffart J-P, Olivier M (2004) Management of N-fertilization of the potato crop using total N-advice software and in-season chlorophyll meter measurements. In: Haverkort AJ, MacKerron DKL (eds). Wageningen Academic Publishers, Decision support systems in potato production, pp 68–83

    Google Scholar 

  • Goffart J-P, Olivier M, MacKerron DKL et al (2000) Spatial and temporal aspects of sampling of potato crops for nitrogen analysis. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen Academic Publishers, Wageningen, pp 83–102

    Google Scholar 

  • Goffart J-P, Olivier M, Destain J-P (2005) Presentation of a decision support system (DSS) for nitrogen management in potato production to improve the use of resources. In: Haverkort AJ, Struik PC (eds) Potato in progress: science meets practice. Wageningen Academic Publishers, pp 134–142

  • Goffart J-P, Olivier M, Frankinet M (2008) Potato crop nitrogen status assessment to improve n fertilization management and efficiency: past–present–future. Potato Res 51:355–383. https://doi.org/10.1007/s11540-008-9118-x

    CAS  Article  Google Scholar 

  • Goffart J-P, Gobin A, Delloye C, Curnel Y (2017) Crop spectral reflectance to support decision making on crop nutrition. International Fertiliser Society, Colchester, p 28

    Google Scholar 

  • Greenwood DJ, Lemaire G, Gosse G et al (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66:425–436

    CAS  Article  Google Scholar 

  • Haboudane D, Miller JR, Tremblay N et al (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81:416–426. https://doi.org/10.1016/S0034-4257(02)00018-4

    Article  Google Scholar 

  • Hack H, Gall H, Klemke T, et al (1993) The BBCH scale for phenological growth stages of potato (Solanum tuberosum L.). In: Proceedings of the 12th annual congress of the European Association for Potato Research, pp 153–154

  • Hatfield JL, Gitelson AA, Schepers JS, Walthall CL (2008) Application of spectral remote sensing for agronomic decisions. Agronomy Journal 100:S-117–S-131. https://doi.org/10.2134/agronj2006.0370c

    CAS  Article  Google Scholar 

  • Haverkort AJ, Franke AC, Steyn JM et al (2015) A robust potato model: LINTUL-POTATO-DSS. Potato Research 58:313–327. https://doi.org/10.1007/s11540-015-9303-7

    Article  Google Scholar 

  • Herrmann I, Karnieli A, Bonfil DJ et al (2010) SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing 31:5127–5143. https://doi.org/10.1080/01431160903283892

    Article  Google Scholar 

  • Herrmann I, Pimstein A, Karnieli A et al (2011) LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment 115:2141–2151. https://doi.org/10.1016/j.rse.2011.04.018

    Article  Google Scholar 

  • Jacques DC, Kergoat L, Hiernaux P et al (2014) Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands. Remote Sensing of Environment 153:40–49. https://doi.org/10.1016/j.rse.2014.07.027

    Article  Google Scholar 

  • Jaramaz D, Perovic V, Belanovic S (2013) The ESA Sentinel-2 mission vegetation variables for remote sensing of plant monitoring

  • Jongschaap REE, Booij R (2004) Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation and Geoinformation 5:205–218. https://doi.org/10.1016/j.jag.2004.03.002

    Article  Google Scholar 

  • Lacaux JP, Tourre YM, Vignolles C et al (2007) Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley fever epidemics in Senegal. Remote Sensing of Environment 106:66–74. https://doi.org/10.1016/j.rse.2006.07.012

    Article  Google Scholar 

  • le Maire G, François C, Dufrêne E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89:1–28. https://doi.org/10.1016/j.rse.2003.09.004

    Article  Google Scholar 

  • MacKerron DKL (2000) Perspectives for use in practice—How can assessment of plant and CNS be used in practice. In: Management of nitrogen and water in potato production. Wageningen Academic Publishers, pp 103–110

  • Meier U (1997) Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-Verlag

    Google Scholar 

  • Morier T, Cambouris AN, Chokmani K (2015) In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agronomy Journal 107:1295–1309. https://doi.org/10.2134/agronj14.0402

    Article  Google Scholar 

  • Olivier M, Goffart J-P, Ledent J-F (2006) Threshold value for chlorophyll meter as decision tool for nitrogen management of potato. Agronomy Journal 98:496–506. https://doi.org/10.2134/agronj2005.0108

    CAS  Article  Google Scholar 

  • Perry EM, Roberts DA (2008) Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress in an annual crop. Agronomy Journal 100:1211–1219. https://doi.org/10.2134/agronj2007.0306

    CAS  Article  Google Scholar 

  • Radoux J, Chome G, Jacques DC et al (2016) Sentinel-2’s potential for sub-pixel landscape feature detection. Remote Sensing 8. https://doi.org/10.3390/rs8060488

  • Schleicher TD, Bausch WC, Delgado JA, Ayers PD (2001) Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. In: 2001 ASABE Annual Meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  • Shenk JS, Westerhaus MO (1993) Analysis of agriculture and food products by near infrared reflectance spectroscopy. Infrasoft International, Port Matilda, PA 116

  • Vincini M, Frazzi E, D’Alessio P (2008) A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agric 9:303–319. https://doi.org/10.1007/s11119-008-9075-z

    Article  Google Scholar 

  • Wang L, Zhou X, Zhu X et al (2016) Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal 4:212–219. https://doi.org/10.1016/j.cj.2016.01.008

    Article  Google Scholar 

  • Weiss M, Baret F (2016) S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Version 1.1

  • Wu J, Wang D, Rosen CJ, Bauer ME (2007) Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research 101:96–103. https://doi.org/10.1016/j.fcr.2006.09.014

    Article  Google Scholar 

  • Zhou Z, Jabloun M, Plauborg F, Andersen MN (2018) Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato. Computers and Electronics in Agriculture 144:154–163. https://doi.org/10.1016/j.compag.2017.12.005

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to all the farmers that allowed us to sample their fields, to the CRA-W crew who contributed to the field work (Amaury Leclef, Gregory Cloux, Daniel Deloze, William Philippe), to Alban Jago (CRA-W) for the processing of the L2A and L3B level Sentinel-2 images, to Yves Brostaux for its expert advices on random forest algorithm and to Belgian Scientific Policy (BELSPO) for the funding of this work. R (R Core Team, 2018) was used for the data processing. Thanks to the whole team and community for developing such a powerful and versatile tool.

Author Contribution (CRediT)

Dimitri Goffart: conceptualisation, methodology, software, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualisation. Feriel Ben Abdallah: conceptualisation, methodology, resources, writing—review and editing. Yannick Curnel: conceptualisation, methodology, writing—review and editing, supervision, funding acquisition. Viviane Planchon: conceptualisation, methodology, resources, project administration, funding acquisition. Jean-Pierre Goffart: conceptualisation, methodology, resources, writing—review and editing, supervision, funding acquisition. Pierre Defourny: conceptualisation, writing—review and editing, supervision, funding acquisition

Code Availability

R code used for the data processing, analysis and figures production is a custom code written for the only purpose of this paper.

Funding

This work was supported by the SPP Politique scientifique–BELSPO under Grants SR/00/300–BELCAM and SR/42/203–STARGATE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Goffart.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 For each explained shoots variables and each regression type, classification of the ten best combinations of explanatory variables used to build empirical models according to the predictive RMSE from a tenfold cross-validation procedure (RMSECV)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goffart, D., Abdallah, F.B., Curnel, Y. et al. In-Season Potato Crop Nitrogen Status Assessment from Satellite and Meteorological Data. Potato Res. (2022). https://doi.org/10.1007/s11540-022-09545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11540-022-09545-0

Keywords

  • Biomass
  • Degree days
  • Nitrogen content
  • Nitrogen nutrition index
  • Nitrogen uptake
  • Sentinel-2